The yeast KRE5 gene encodes a probable endoplasmic reticulum protein required for (1----6)-beta-D-glucan synthesis and normal cell growth.
Ontology highlight
ABSTRACT: Yeast kre mutants define a pathway of cell wall (1----6)-beta-D-glucan synthesis, and mutants in genes KRE5 and KRE6 appear to interact early in such a pathway. We have cloned KRE5, and the sequence predicts the product to be a large, hydrophilic, secretory glycoprotein which contains the COOH-terminal endoplasmic reticulum retention signal, HDEL. Deletion of the KRE5 gene resulted in cells with aberrant morphology and extremely compromised growth. Suppressors to the KRE5 deletions arose at a frequency of 1 in 10(7) to 1 in 10(8) and permitted an analysis of deletions which were found to contain no alkali-insoluble (1----6)-beta-D-glucan. These results indicate a role for (1----6)-beta-D-glucan in normal cell growth and suggest a model for sequential assembly of (1----6)-beta-D-glucan in the yeast secretory pathway.
SUBMITTER: Meaden P
PROVIDER: S-EPMC360665 | biostudies-other | 1990 Jun
REPOSITORIES: biostudies-other
ACCESS DATA