Unknown

Dataset Information

0

Regulation of programmed ribosomal frameshifting by co-translational refolding RNA hairpins.


ABSTRACT: RNA structures are unwound for decoding. In the process, they can pause the elongating ribosome for regulation. An example is the stimulation of -1 programmed ribosomal frameshifting, leading to 3' direction slippage of the reading-frame during elongation, by specific pseudoknot stimulators downstream of the frameshifting site. By investigating a recently identified regulatory element upstream of the SARS coronavirus (SARS-CoV) -1 frameshifting site, it is shown that a minimal functional element with hairpin forming potential is sufficient to down-regulate-1 frameshifting activity. Mutagenesis to disrupt or restore base pairs in the potential hairpin stem reveals that base-pair formation is required for-1 frameshifting attenuation in vitro and in 293T cells. The attenuation efficiency of a hairpin is determined by its stability and proximity to the frameshifting site; however, it is insensitive to E site sequence variation. Additionally, using a dual luciferase assay, it can be shown that a hairpin stimulated +1 frameshifting when placed upstream of a +1 shifty site in yeast. The investigations indicate that the hairpin is indeed a cis-acting programmed reading-frame switch modulator. This result provides insight into mechanisms governing-1 frameshifting stimulation and attenuation. Since the upstream hairpin is unwound (by a marching ribosome) before the downstream stimulator, this study's findings suggest a new mode of translational regulation that is mediated by the reformed stem of a ribosomal unwound RNA hairpin during elongation.

SUBMITTER: Cho CP 

PROVIDER: S-EPMC3639245 | biostudies-other | 2013

REPOSITORIES: biostudies-other

altmetric image

Publications

Regulation of programmed ribosomal frameshifting by co-translational refolding RNA hairpins.

Cho Che-Pei CP   Lin Szu-Chieh SC   Chou Ming-Yuan MY   Hsu Hsiu-Ting HT   Chang Kung-Yao KY  

PloS one 20130429 4


RNA structures are unwound for decoding. In the process, they can pause the elongating ribosome for regulation. An example is the stimulation of -1 programmed ribosomal frameshifting, leading to 3' direction slippage of the reading-frame during elongation, by specific pseudoknot stimulators downstream of the frameshifting site. By investigating a recently identified regulatory element upstream of the SARS coronavirus (SARS-CoV) -1 frameshifting site, it is shown that a minimal functional element  ...[more]

Similar Datasets

| S-EPMC7094908 | biostudies-literature
| S-EPMC6787027 | biostudies-literature
| S-EPMC7075266 | biostudies-literature
| S-EPMC2080864 | biostudies-literature
| S-EPMC4040542 | biostudies-literature
| S-EPMC7111862 | biostudies-literature
| S-EPMC7114514 | biostudies-literature
| S-EPMC8486322 | biostudies-literature
| S-EPMC4759687 | biostudies-literature
| S-EPMC7297798 | biostudies-literature