Unknown

Dataset Information

0

Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes.


ABSTRACT: The three classes of enzymes which inactivate aminoglycosides and lead to bacterial resistance are reviewed. DNA hybridization studies have shown that different genes can encode aminoglycoside-modifying enzymes with identical resistance profiles. Comparisons of the amino acid sequences of 49 aminoglycoside-modifying enzymes have revealed new insights into the evolution and relatedness of these proteins. A preliminary assessment of the amino acids which may be important in binding aminoglycosides was obtained from these data and from the results of mutational analysis of several of the genes encoding aminoglycoside-modifying enzymes. Recent studies have demonstrated that aminoglycoside resistance can emerge as a result of alterations in the regulation of normally quiescent cellular genes or as a result of acquiring genes which may have originated from aminoglycoside-producing organisms or from other resistant organisms. Dissemination of these genes is aided by a variety of genetic elements including integrons, transposons, and broad-host-range plasmids. As knowledge of the molecular structure of these enzymes increases, progress can be made in our understanding of how resistance to new aminoglycosides emerges.

SUBMITTER: Shaw KJ 

PROVIDER: S-EPMC372903 | biostudies-other | 1993 Mar

REPOSITORIES: biostudies-other

altmetric image

Publications

Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes.

Shaw K J KJ   Rather P N PN   Hare R S RS   Miller G H GH  

Microbiological reviews 19930301 1


The three classes of enzymes which inactivate aminoglycosides and lead to bacterial resistance are reviewed. DNA hybridization studies have shown that different genes can encode aminoglycoside-modifying enzymes with identical resistance profiles. Comparisons of the amino acid sequences of 49 aminoglycoside-modifying enzymes have revealed new insights into the evolution and relatedness of these proteins. A preliminary assessment of the amino acids which may be important in binding aminoglycosides  ...[more]

Similar Datasets

| S-EPMC2992599 | biostudies-literature
| S-EPMC6167752 | biostudies-literature
| S-EPMC4402895 | biostudies-literature
| S-EPMC7443399 | biostudies-literature
| S-EPMC92597 | biostudies-literature
| S-EPMC3819198 | biostudies-literature
| S-EPMC4468725 | biostudies-literature
| S-EPMC9312099 | biostudies-literature
| S-EPMC3367594 | biostudies-literature
| S-EPMC9928423 | biostudies-literature