Deformation properties between fluid and periodic circular obstacles in polydimethylsiloxane microchannels: Experimental and numerical investigations under various conditions.
Ontology highlight
ABSTRACT: Understanding the mechanical properties of optically transparent polydimethylsiloxane (PDMS) microchannels was essential to the design of polymer-based microdevices. In this experiment, PDMS microchannels were filled with a 100 μM solution of rhodamine 6G dye at very low Reynolds numbers (∼10(-3)). The deformation of PDMS microchannels created by pressure-driven flow was investigated by fluorescence microscopy and quantified the deformation by the linear relationship between dye layer thickness and intensity. A line scan across the channel determined the microchannel deformation at several channel positions. Scaling analysis widely used to justify PDMS bulging approximation was allowed when the applied flow rate was as high as 2.0 μl/min. The three physical parameters (i.e., flow rate, PDMS wall thickness, and mixing ratio) and the design parameter (i.e., channel aspect ratio = channel height/channel width) were considered as critical parameters and provided the different features of pressure distributions within polymer-based microchannel devices. The investigations of the four parameters performed on flexible materials were carried out by comparison of experiment and finite element method (FEM) results. The measured Young's modulus from PDMS tensile test specimens at various circumstances provided reliable results for the finite element method. A thin channel wall, less cross-linker, high flow rate, and low aspect ratio microchannel were inclined to have a significant PDMS bulging. Among them, various mixing ratios related to material property and aspect ratios were one of the significant factors to determine PDMS bulging properties. The measured deformations were larger than the numerical simulation but were within corresponding values predicted by the finite element method in most cases.
SUBMITTER: Kang C
PROVIDER: S-EPMC3779265 | biostudies-other | 2013
REPOSITORIES: biostudies-other
ACCESS DATA