A quantitative atlas of Even-skipped and Hunchback expression in Clogmia albipunctata (Diptera: Psychodidae) blastoderm embryos.
Ontology highlight
ABSTRACT: Comparative studies of developmental processes are one of the main approaches to evolutionary developmental biology (evo-devo). Over recent years, there has been a shift of focus from the comparative study of particular regulatory genes to the level of whole gene networks. Reverse-engineering methods can be used to computationally reconstitute and analyze the function and dynamics of such networks. These methods require quantitative spatio-temporal expression data for model fitting. Obtaining such data in non-model organisms remains a major technical challenge, impeding the wider application of data-driven mathematical modeling to evo-devo.We have raised antibodies against four segmentation gene products in the moth midge Clogmia albipunctata, a non-drosophilid dipteran species. We have used these antibodies to create a quantitative atlas of protein expression patterns for the gap gene hunchback (hb), and the pair-rule gene even-skipped (eve). Our data reveal differences in the dynamics of Hb boundary positioning and Eve stripe formation between C. albipunctata and Drosophila melanogaster. Despite these differences, the overall relative spatial arrangement of Hb and Eve domains is remarkably conserved between these two distantly related dipteran species.We provide a proof of principle that it is possible to acquire quantitative gene expression data at high accuracy and spatio-temporal resolution in non-model organisms. Our quantitative data extend earlier qualitative studies of segmentation gene expression in C. albipunctata, and provide a starting point for comparative reverse-engineering studies of the evolutionary and developmental dynamics of the segmentation gene system.
SUBMITTER: Janssens H
PROVIDER: S-EPMC3897886 | biostudies-other | 2014 Jan
REPOSITORIES: biostudies-other
ACCESS DATA