Unknown

Dataset Information

0

The microbial gene diversity along an elevation gradient of the Tibetan grassland.


ABSTRACT: Tibet is one of the most threatened regions by climate warming, thus understanding how its microbial communities function may be of high importance for predicting microbial responses to climate changes. Here, we report a study to profile soil microbial structural genes, which infers functional roles of microbial communities, along four sites/elevations of a Tibetan mountainous grassland, aiming to explore the potential microbial responses to climate changes via a strategy of space-for-time substitution. Using a microarray-based metagenomics tool named GeoChip 4.0, we showed that microbial communities were distinct for most but not all of the sites. Substantial variations were apparent in stress, N and C-cycling genes, but they were in line with the functional roles of these genes. Cold shock genes were more abundant at higher elevations. Also, gdh converting ammonium into urea was more abundant at higher elevations, whereas ureC converting urea into ammonium was less abundant, which was consistent with soil ammonium contents. Significant correlations were observed between N-cycling genes (ureC, gdh and amoA) and nitrous oxide flux, suggesting that they contributed to community metabolism. Lastly, we found by Canonical correspondence analysis, Mantel tests and the similarity tests that soil pH, temperature, NH4(+)-N and vegetation diversity accounted for the majority (81.4%) of microbial community variations, suggesting that these four attributes were major factors affecting soil microbial communities. On the basis of these observations, we predict that climate changes in the Tibetan grasslands are very likely to change soil microbial community functional structure, with particular impacts on microbial N-cycling genes and consequently microbe-mediated soil N dynamics.

SUBMITTER: Yang Y 

PROVIDER: S-EPMC3906809 | biostudies-other | 2014 Feb

REPOSITORIES: biostudies-other

altmetric image

Publications

The microbial gene diversity along an elevation gradient of the Tibetan grassland.

Yang Yunfeng Y   Gao Ying Y   Wang Shiping S   Xu Depeng D   Yu Hao H   Wu Linwei L   Lin Qiaoyan Q   Hu Yigang Y   Li Xiangzhen X   He Zhili Z   Deng Ye Y   Zhou Jizhong J  

The ISME journal 20130829 2


Tibet is one of the most threatened regions by climate warming, thus understanding how its microbial communities function may be of high importance for predicting microbial responses to climate changes. Here, we report a study to profile soil microbial structural genes, which infers functional roles of microbial communities, along four sites/elevations of a Tibetan mountainous grassland, aiming to explore the potential microbial responses to climate changes via a strategy of space-for-time subst  ...[more]

Similar Datasets

2013-07-13 | GSE48820 | GEO
2013-07-13 | E-GEOD-48820 | biostudies-arrayexpress
2013-11-16 | E-GEOD-52425 | biostudies-arrayexpress
| S-EPMC8854778 | biostudies-literature
| PRJNA906103 | ENA
| S-EPMC4535962 | biostudies-literature
| S-EPMC9889656 | biostudies-literature
| S-EPMC8845567 | biostudies-literature
2014-06-13 | GSE58433 | GEO
2014-06-13 | E-GEOD-58433 | biostudies-arrayexpress