Optimization (central composite design) and validation of HPLC method for investigation of emtricitabine loaded poly(lactic-co-glycolic acid) nanoparticles: in vitro drug release and in vivo pharmacokinetic studies.
Ontology highlight
ABSTRACT: The objective of the current study is to develop nanoparticles (NPs) drug delivery system of emtricitabine solely using poly(lactic-co-glycolic acid) (PLGA) and evaluate its in vitro and in vivo release performance by systematically optimized HPLC method using Formulation by Design (FbD). NPs were evaluated for in vitro release and in vivo absorption study. The desired chromatographic separation was achieved on a Phenomenex C18 (250 mm × 4.6 mm I.D., 5 μm) column, under isocratic conditions using UV detection at 280 nm. The optimized mobile phase consisted of a mixture of 40 mM phosphate dihydrogen phosphate buffer (pH 6.8), methanol, and 2% acetonitrile in a ratio of (83 : 15 : 2, v/v/v) at a flow rate of 1 mL/min. The linear regression analysis for the calibration curves showed a good linear correlation over the concentration range 0.040-2.0 μg/mL, with retention time of 4.39 min. An average encapsulation efficiency of 74.34% was obtained for NPs. In vitro studies showed zero-order release and about 95% drug being released within 15 days in PBS (pH 7.4). In conclusion, the proposed optimized method was successfully applied for the determination of in vitro and in vivo release studies of emtricitabine NPs.
SUBMITTER: Singh G
PROVIDER: S-EPMC3929521 | biostudies-other | 2014
REPOSITORIES: biostudies-other
ACCESS DATA