An empirical model to estimate daily forest fire smoke exposure over a large geographic area using air quality, meteorological, and remote sensing data.
Ontology highlight
ABSTRACT: Exposure to forest fire smoke (FFS) is associated with a range of adverse health effects. The British Columbia Asthma Medication Surveillance (BCAMS) product was developed to detect potential impacts from FFS in British Columbia (BC), Canada. However, it has been a challenge to estimate FFS exposure with sufficient spatial coverage for the provincial population. We constructed an empirical model to estimate FFS-related fine particulate matter (PM2.5) for all populated areas of BC using data from the most extreme FFS days in 2003 through 2012. The input data included PM2.5 measurements on the previous day, remotely sensed aerosols, remotely sensed fires, hand-drawn tracings of smoke plumes from satellite images, fire danger ratings, and the atmospheric venting index. The final model explained 71% of the variance in PM2.5 observations. Model performance was tested in days with high, moderate, and low levels of FFS, resulting in correlations from 0.57 to 0.83. We also developed a method to assign the model estimates to geographical local health areas for use in BCAMS. The simplicity of the model allows easy application in time-constrained public health surveillance, and its sufficient spatial coverage suggests utility as an exposure assessment tool for epidemiologic studies on FFS exposure.
SUBMITTER: Yao J
PROVIDER: S-EPMC3994508 | biostudies-other | 2014 May-Jun
REPOSITORIES: biostudies-other
ACCESS DATA