Unknown

Dataset Information

0

On fuzzy ideals of BL-algebras.


ABSTRACT: In this paper we investigate further properties of fuzzy ideals of a BL-algebra. The notions of fuzzy prime ideals, fuzzy irreducible ideals, and fuzzy Gödel ideals of a BL-algebra are introduced and their several properties are investigated. We give a procedure to generate a fuzzy ideal by a fuzzy set. We prove that every fuzzy irreducible ideal is a fuzzy prime ideal but a fuzzy prime ideal may not be a fuzzy irreducible ideal and prove that a fuzzy prime ideal ω is a fuzzy irreducible ideal if and only if ω(0) = 1 and |Im(ω)| = 2. We give the Krull-Stone representation theorem of fuzzy ideals in BL-algebras. Furthermore, we prove that the lattice of all fuzzy ideals of a BL-algebra is a complete distributive lattice. Finally, it is proved that every fuzzy Boolean ideal is a fuzzy Gödel ideal, but the converse implication is not true.

SUBMITTER: Meng BL 

PROVIDER: S-EPMC4032761 | biostudies-other | 2014

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC4466498 | biostudies-other
| S-EPMC4212623 | biostudies-other
| S-EPMC4127294 | biostudies-other
| S-EPMC4000979 | biostudies-other
| S-EPMC4058197 | biostudies-other
| S-EPMC4838189 | biostudies-literature
| S-EPMC10861923 | biostudies-literature
| S-EPMC3325926 | biostudies-literature
| S-EPMC9523042 | biostudies-literature
| S-EPMC7849544 | biostudies-literature