Two different approaches for pharmacokinetic modeling of exhaled drug concentrations.
Ontology highlight
ABSTRACT: Online measurement of drug concentrations in patient's breath is a promising approach for individualized dosage. A direct transfer from breath- to blood-concentrations is not possible. Measured exhaled concentrations are following the blood-concentration with a delay in non-steady-state situations. Therefore, it is necessary to integrate the breath-concentration into a pharmacological model. Two different approaches for pharmacokinetic modelling are presented. Usually a 3-compartment model is used for pharmacokinetic calculations of blood concentrations. This 3-compartment model is extended with a 2-compartment model based on the first compartment of the 3-compartment model and a new lung compartment. The second approach is to calculate a time delay of changes in the concentration of the first compartment to describe the lung-concentration. Exemplarily both approaches are used for modelling of exhaled propofol. Based on time series of exhaled propofol measurements using an ion-mobility-spectrometer every minute for 346 min a correlation of calculated plasma and the breath concentration was used for modelling to deliver R(2) = 0.99 interdependencies. Including the time delay modelling approach the new compartment coefficient k(e0lung) was calculated to k(e0lung) = 0.27 min(-1) with R(2) = 0.96. The described models are not limited to propofol. They could be used for any kind of drugs, which are measurable in patient's breath.
SUBMITTER: Kreuer S
PROVIDER: S-EPMC4067807 | biostudies-other | 2014
REPOSITORIES: biostudies-other
ACCESS DATA