Unknown

Dataset Information

0

Minimize the percentage of noise in biomedical images using neural networks.


ABSTRACT: The overall goal of the research is to improve the quality of biomedical image for telemedicine with minimum percentages of noise in the retrieved image and to take less computation time. The novelty of this technique lies in the implementation of spectral coding for biomedical images using neural networks in order to accomplish the above objectives. This work is in continuity of an ongoing research project aimed at developing a system for efficient image compression approach for telemedicine in Saudi Arabia. We compare the efficiency of this technique against existing image compression techniques, namely, JPEG2000, in terms of compression ratio, peak signal to noise ratio (PSNR), and computation time. To our knowledge, the research is the primary in providing a comparative study with other techniques used in the compression of biomedical images. This work explores and tests biomedical images such as X-rays, computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET).

SUBMITTER: Saudagar AK 

PROVIDER: S-EPMC4127272 | biostudies-other | 2014

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC8659651 | biostudies-literature
| S-EPMC7435602 | biostudies-literature
| S-EPMC9577122 | biostudies-literature
| S-EPMC7642784 | biostudies-literature
| S-EPMC7092978 | biostudies-literature
| S-EPMC8341115 | biostudies-literature
| S-EPMC9144698 | biostudies-literature
| S-EPMC8164481 | biostudies-literature
| S-EPMC8309686 | biostudies-literature
| S-EPMC8917167 | biostudies-literature