Unknown

Dataset Information

0

Metal-independent reduction of hydrogen peroxide by semiquinones.


ABSTRACT: The quinones 1,4-naphthoquinone (NQ), tetramethyl-1,4-benzoquinone (DQ), 2-methyl-1,4-naphthoquinone (MNQ), 2,3-dimethoxy-5-methyl-1,4-benzoquinone (UBQ-0), 2,6-dimethylbenzoquinone (DMBQ), 2,6-dimethoxybenzoquinone (DMOBQ), and 9,10-phenanthraquinone (PHQ) enhance the rate of H2O2 reduction by ascorbate, under anaerobic conditions, as detected from the amount of methane produced after hydroxyl radical reaction with dimethyl sulfoxide. The amount of methane produced increases with an increase in the quinone one-electron reduction potential. The most active quinone in this series, PHQ, is only 14% less active than the classic Fenton reagent cation, Fe(2+), at the same concentration. Since PHQ is a common toxin present in diesel combustion smoke, the possibility that PHQ-mediated catalysis of hydroxyl radical formation is similar to that of Fe(2+) adds another important pathway to the modes in which PHQ can execute its toxicity. Because quinones are known to enhance the antitumor activity of ascorbate and because ascorbate enhances the formation of H2O2 in tissues, the quinone-mediated reduction of H2O2 should be relevant to this type of antitumor activity, especially under hypoxic conditions.

SUBMITTER: Sanchez-Cruz P 

PROVIDER: S-EPMC4137985 | biostudies-other | 2014 Aug

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC6728328 | biostudies-literature
| S-EPMC8159481 | biostudies-literature
| S-EPMC3039651 | biostudies-literature
| S-EPMC3399031 | biostudies-literature
| S-EPMC4476646 | biostudies-literature
| S-EPMC1166249 | biostudies-other
2009-04-23 | GSE12602 | GEO
| S-EPMC6606954 | biostudies-literature
| S-EPMC2863026 | biostudies-literature
| S-EPMC3937522 | biostudies-literature