Mutations in the SAM domain of the ETV6-NTRK3 chimeric tyrosine kinase block polymerization and transformation activity.
Ontology highlight
ABSTRACT: The 12p13 ETV6 (TEL) gene is frequently targeted by chromosomal translocations in human malignancies, resulting in the formation of oncogenic ETV6 gene fusions. Many of the known partner genes encode protein tyrosine kinases (PTKs), generating fusion proteins that function as chimeric PTKs. ETV6-NTRK3 (EN), comprised of the ETV6 SAM domain fused to the NTRK3 PTK, is unique among ETV6 chimeric oncoproteins, as it is expressed in cancers of multiple lineages. We initially hypothesized that, similar to other ETV6-PTK chimeras, SAM-mediated dimerization of EN leads to constitutive activation of the PTK and downstream signaling cascades. However, when the EN SAM domain was replaced with an inducible FK506 binding protein (FKBP) dimerization system, resulting FKBP-NTRK3 chimeras failed to transform NIH 3T3 cells even though PTK activation was preserved. It was recently shown that the ETV6 SAM domain has two potential interacting surfaces, raising the possibility that this domain can mediate protein polymerization. We therefore mutated each EN SAM binding interface in a manner shown previously to abolish self-association of wild-type ETV6. Each mutation completely blocked the ability of EN to polymerize, to activate its PTK, and to transform NIH 3T3 cells. Furthermore, EN itself formed large polymeric structures within cells while mutant EN proteins were present only as monomers. Finally, we observed a dominant negative effect on the transformation of isolated SAM domains coexpressed in EN-transformed cells. Taken together, our results suggest that higher-order polymerization may be a critical requirement for the transformation activity of EN and possibly other ETV6-PTK fusion proteins.
Project description:Over the last decade, several protein kinases inhibitors have reached the market for cancer chemotherapy. The kinomes of pathogens represent potentially attractive targets in infectious diseases. The functions of the majority of protein kinases of Plasmodium falciparum, the parasitic protist responsible for the most virulent form of human malaria, remain unknown. Here we present a thorough characterisation of PfTKL3 (PF13_0258), an enzyme that belongs to the tyrosine kinase-like kinase (TKL) group. We demonstrate by reverse genetics that PfTKL3 is essential for asexual parasite proliferation in human erythrocytes. PfTKL3 is expressed in both asexual and gametocytes stages, and in the latter the protein co-localises with cytoskeleton microtubules. Recombinant PfTKL3 displays in vitro autophosphorylation activity and is able to phosphorylate exogenous substrates, and both activities are dramatically dependent on the presence of an N-terminal "sterile alpha-motif" domain. This study identifies PfTKL3 as a validated drug target amenable to high-throughput screening.
Project description:Polycomb group (PcG) proteins mediate heritable but reversible silencing of developmental regulator genes by modifying their chromatin configuration. Accumulating evidence documents a role for PcG proteins in regulating higher order chromatin structures likely by their clustering, however, underlying mechanisms and its impact on transcriptional regulation remain obscure. In this study, we found that subnuclear clustering of PRC1 at canonical PcG target genes depended on head-to-tail polymerization property of SAM domain of Phc2 and likely Phc1. We show that Phc2-SAM polymerization limits the dynamic nature of PRC1, thereby promotes stable association of PRC1 with PcG target genes and contributes to their robust silencing. Our findings suggest a novel model by which SAM polymerization of Phc2 modulates the structural organization of PcG complexes to enable robust yet reversible PcG-mediated repression during development. Examination of H3K27me3 in wild type and the Phc2 mutant cells
Project description:Polycomb group (PcG) proteins mediate heritable but reversible silencing of developmental regulator genes by modifying their chromatin configuration. Accumulating evidence documents a role for PcG proteins in regulating higher order chromatin structures likely by their clustering, however, underlying mechanisms and its impact on transcriptional regulation remain obscure. In this study, we found that subnuclear clustering of PRC1 at canonical PcG target genes depended on head-to-tail polymerization property of SAM domain of Phc2 and likely Phc1. We show that Phc2-SAM polymerization limits the dynamic nature of PRC1, thereby promotes stable association of PRC1 with PcG target genes and contributes to their robust silencing. Our findings suggest a novel model by which SAM polymerization of Phc2 modulates the structural organization of PcG complexes to enable robust yet reversible PcG-mediated repression during development.
Project description:Polycomb group (PcG) proteins mediate heritable but reversible silencing of developmental regulator genes by modifying their chromatin configuration. Accumulating evidence documents a role for PcG proteins in regulating higher order chromatin structures likely by their clustering, however, underlying mechanisms and its impact on transcriptional regulation remain obscure. In this study, we found that subnuclear clustering of PRC1 at canonical PcG target genes depended on head-to-tail polymerization property of SAM domain of Phc2 and likely Phc1. We show that Phc2-SAM polymerization limits the dynamic nature of PRC1, thereby promotes stable association of PRC1 with PcG target genes and contributes to their robust silencing. Our findings suggest a novel model by which SAM polymerization of Phc2 modulates the structural organization of PcG complexes to enable robust yet reversible PcG-mediated repression during development. Wild type and Phc2L307R/L307R MEFs were used for RNA extraction and hybridization on Affymetrix microarrays.
Project description:Polycomb group (PcG) proteins mediate heritable but reversible silencing of developmental regulator genes by modifying their chromatin configuration. Accumulating evidence documents a role for PcG proteins in regulating higher order chromatin structures likely by their clustering, however, underlying mechanisms and its impact on transcriptional regulation remain obscure. In this study, we found that subnuclear clustering of PRC1 at canonical PcG target genes depended on head-to-tail polymerization property of SAM domain of Phc2 and likely Phc1. We show that Phc2-SAM polymerization limits the dynamic nature of PRC1, thereby promotes stable association of PRC1 with PcG target genes and contributes to their robust silencing. Our findings suggest a novel model by which SAM polymerization of Phc2 modulates the structural organization of PcG complexes to enable robust yet reversible PcG-mediated repression during development.
Project description:Polycomb group (PcG) proteins mediate heritable but reversible silencing of developmental regulator genes by modifying their chromatin configuration. Accumulating evidence documents a role for PcG proteins in regulating higher order chromatin structures likely by their clustering, however, underlying mechanisms and its impact on transcriptional regulation remain obscure. In this study, we found that subnuclear clustering of PRC1 at canonical PcG target genes depended on head-to-tail polymerization property of SAM domain of Phc2 and likely Phc1. We show that Phc2-SAM polymerization limits the dynamic nature of PRC1, thereby promotes stable association of PRC1 with PcG target genes and contributes to their robust silencing. Our findings suggest a novel model by which SAM polymerization of Phc2 modulates the structural organization of PcG complexes to enable robust yet reversible PcG-mediated repression during development. ChIP on chip analysis was carried out using the Mouse Promoter ChIP-on-chip Microarray Set (G4490A, Agilent, Palo Alto, Calif., USA). MEFs were subjected to ChIP assay using a Ring1B antibody. Purified immunoprecipitated and input DNA was subjected to T7 RNA polymerase-based amplification. Labeling, hybridization and washing were carried out according to the Agilent mammalian ChIP-on-chip protocol (ver.9.0). Scanned images were quantified with Agilent Feature Extraction software under standard conditions.
Project description:Polycomb group (PcG) proteins mediate heritable but reversible silencing of developmental regulator genes by modifying their chromatin configuration. Accumulating evidence documents a role for PcG proteins in regulating higher order chromatin structures likely by their clustering, however, underlying mechanisms and its impact on transcriptional regulation remain obscure. In this study, we found that subnuclear clustering of PRC1 at canonical PcG target genes depended on head-to-tail polymerization property of SAM domain of Phc2 and likely Phc1. We show that Phc2-SAM polymerization limits the dynamic nature of PRC1, thereby promotes stable association of PRC1 with PcG target genes and contributes to their robust silencing. Our findings suggest a novel model by which SAM polymerization of Phc2 modulates the structural organization of PcG complexes to enable robust yet reversible PcG-mediated repression during development.
Project description:Polycomb group (PcG) proteins mediate heritable but reversible silencing of developmental regulator genes by modifying their chromatin configuration. Accumulating evidence documents a role for PcG proteins in regulating higher order chromatin structures likely by their clustering, however, underlying mechanisms and its impact on transcriptional regulation remain obscure. In this study, we found that subnuclear clustering of PRC1 at canonical PcG target genes depended on head-to-tail polymerization property of SAM domain of Phc2 and likely Phc1. We show that Phc2-SAM polymerization limits the dynamic nature of PRC1, thereby promotes stable association of PRC1 with PcG target genes and contributes to their robust silencing. Our findings suggest a novel model by which SAM polymerization of Phc2 modulates the structural organization of PcG complexes to enable robust yet reversible PcG-mediated repression during development. Examination of Ring1B in wild type and the Phc2 mutant cells
Project description:Polycomb group (PcG) proteins mediate heritable but reversible silencing of developmental regulator genes by modifying their chromatin configuration. Accumulating evidence documents a role for PcG proteins in regulating higher order chromatin structures likely by their clustering, however, underlying mechanisms and its impact on transcriptional regulation remain obscure. In this study, we found that subnuclear clustering of PRC1 at canonical PcG target genes depended on head-to-tail polymerization property of SAM domain of Phc2 and likely Phc1. We show that Phc2-SAM polymerization limits the dynamic nature of PRC1, thereby promotes stable association of PRC1 with PcG target genes and contributes to their robust silencing. Our findings suggest a novel model by which SAM polymerization of Phc2 modulates the structural organization of PcG complexes to enable robust yet reversible PcG-mediated repression during development.
Project description:ALK inhibitor crizotinib has shown potent antitumor activity in children with refractory Anaplastic Large Cell Lymphoma (ALCL) and the opportunity to include ALK inhibitors in first-line therapies is oncoming. However, recent studies suggest that crizotinib-resistance mutations may emerge in ALCL patients. In the present study, we analyzed ALK kinase domain mutational status of 36 paediatric ALCL patients at diagnosis to identify point mutations and gene aberrations that could impact on NPM-ALK gene expression, activity and sensitivity to small-molecule inhibitors. Amplicon ultra-deep sequencing of ALK kinase domain detected 2 single point mutations, R335Q and R291Q, in 2 cases, 2 common deletions of exon 23 and 25 in all the patients, and 7 splicing-related INDELs in a variable number of them. The functional impact of missense mutations and INDELs was evaluated. Point mutations were shown to affect protein kinase activity, signalling output and drug sensitivity. INDELs, instead, generated kinase-dead variants with dominant negative effect on NPM-ALK kinase, in virtue of their capacity of forming non-functional heterocomplexes. Consistently, when co-expressed, INDELs increased crizotinib inhibitory activity on NPM-ALK signal processing, as demonstrated by the significant reduction of STAT3 phosphorylation. Functional changes in ALK kinase activity induced by both point mutations and structural rearrangements were resolved by molecular modelling and dynamic simulation analysis, providing novel insights into ALK kinase domain folding and regulation. Therefore, these data suggest that NPM-ALK pre-therapeutic mutations may be found at low frequency in ALCL patients. These mutations occur randomly within the ALK kinase domain and affect protein activity, while preserving responsiveness to crizotinib.