Unknown

Dataset Information

0

A near-IR uncaging strategy based on cyanine photochemistry.


ABSTRACT: The development of photocaging groups activated by near-IR light would enable new approaches for basic research and allow for spatial and temporal control of drug delivery. Here we report a near-IR light-initiated uncaging reaction sequence based on readily synthesized C4'-dialkylamine-substituted heptamethine cyanines. Phenol-containing small molecules are uncaged through sequential release of the C4'-amine and intramolecular cyclization. The release sequence is initiated by a previously unexploited photochemical reaction of the cyanine fluorophore scaffold. The uncaging process is compatible with biological milieu and is initiated with low intensity 690 nm light. We show that cell viability can be inhibited through light-dependent release of the estrogen receptor antagonist, 4-hydroxycyclofen. In addition, through uncaging of the same compound, gene expression is controlled with near-IR light in a ligand-dependent CreER(T)/LoxP-reporter cell line derived from transgenic mice. These studies provide a chemical foundation that we expect will enable specific delivery of small molecules using cytocompatible, tissue penetrant near-IR light.

SUBMITTER: Gorka AP 

PROVIDER: S-EPMC4195383 | biostudies-other | 2014 Oct

REPOSITORIES: biostudies-other

altmetric image

Publications

A near-IR uncaging strategy based on cyanine photochemistry.

Gorka Alexander P AP   Nani Roger R RR   Zhu Jianjian J   Mackem Susan S   Schnermann Martin J MJ  

Journal of the American Chemical Society 20140924 40


The development of photocaging groups activated by near-IR light would enable new approaches for basic research and allow for spatial and temporal control of drug delivery. Here we report a near-IR light-initiated uncaging reaction sequence based on readily synthesized C4'-dialkylamine-substituted heptamethine cyanines. Phenol-containing small molecules are uncaged through sequential release of the C4'-amine and intramolecular cyclization. The release sequence is initiated by a previously unexpl  ...[more]

Similar Datasets

| S-EPMC2871283 | biostudies-literature
| S-EPMC8283799 | biostudies-literature
| S-EPMC6278338 | biostudies-literature
| S-EPMC4743669 | biostudies-literature
| S-EPMC6648811 | biostudies-literature
| S-EPMC8153078 | biostudies-literature
| S-EPMC6548462 | biostudies-literature
| S-EPMC9916991 | biostudies-literature
| S-EPMC5500852 | biostudies-literature
| S-EPMC2684671 | biostudies-literature