Unknown

Dataset Information

0

Splicing of receptor-like kinase-encoding SNC4 and CERK1 is regulated by two conserved splicing factors that are required for plant immunity.


ABSTRACT: Plant immune receptors belonging to the receptor-like kinase (RLK) family play important roles in the recognition of microbial pathogens and activation of downstream defense responses. The Arabidopsis mutant snc4-1D contains a gain-of-function mutation in the RLK SNC4 (SUPPRESSOR OF NPR1-1, CONSTITUTIVE4), which leads to constitutive activation of defense responses. Analysis of suppressor mutants of snc4-1D identified two conserved splicing factors, SUA (SUPPRESSOR OF ABI3-5) and RSN2 (REQUIRED FOR SNC4-1D 2), that are required for the constitutive defense responses in snc4-1D. In sua and rsn2 mutants, SNC4 splicing is altered and the amount of SNC4 transcripts is reduced. Further analysis showed that SUA and RSN2 are also required for the proper splicing of CERK1 (CHITIN ELICITOR RECEPTOR KINASE1), which encodes another RLK that functions as a receptor for chitin. In sua and rsn2 mutants, induction of reactive oxygen species by chitin is reduced and the non-pathogenic bacteria Pseudomonas syringae pv. tomato DC3000hrcC grows to higher titers than in wild-type plants. Our study suggests that pre-mRNA splicing plays important roles in the regulation of plant immunity mediated by the RLKs SNC4 and CERK1.

SUBMITTER: Zhang Z 

PROVIDER: S-EPMC4261838 | biostudies-other | 2014 Dec

REPOSITORIES: biostudies-other

altmetric image

Publications

Splicing of receptor-like kinase-encoding SNC4 and CERK1 is regulated by two conserved splicing factors that are required for plant immunity.

Zhang Zhibin Z   Liu Yanan Y   Ding Pingtao P   Li Yan Y   Kong Qing Q   Zhang Yuelin Y  

Molecular plant 20140929 12


Plant immune receptors belonging to the receptor-like kinase (RLK) family play important roles in the recognition of microbial pathogens and activation of downstream defense responses. The Arabidopsis mutant snc4-1D contains a gain-of-function mutation in the RLK SNC4 (SUPPRESSOR OF NPR1-1, CONSTITUTIVE4), which leads to constitutive activation of defense responses. Analysis of suppressor mutants of snc4-1D identified two conserved splicing factors, SUA (SUPPRESSOR OF ABI3-5) and RSN2 (REQUIRED  ...[more]

Similar Datasets

| S-EPMC3128105 | biostudies-literature
| S-EPMC2736892 | biostudies-other
| S-EPMC55361 | biostudies-literature
| S-EPMC2265522 | biostudies-literature
| S-EPMC7332298 | biostudies-literature
| S-EPMC45786 | biostudies-other
| S-EPMC4619653 | biostudies-literature
| S-EPMC4791365 | biostudies-other
2021-03-31 | GSE154886 | GEO
| S-EPMC3927076 | biostudies-literature