Reflection-mode in vivo photoacoustic microscopy with subwavelength lateral resolution.
Ontology highlight
ABSTRACT: We developed a reflection-mode subwavelength-resolution photoacoustic microscopy system capable of imaging optical absorption contrast in vivo. The simultaneous high-resolution and reflection-mode imaging capacity of the system was enabled by delicately configuring a miniature high-frequency ultrasonic transducer tightly under a water-immersion objective with numerical aperture of 1.0. At 532-nm laser illumination, the lateral resolution of the system was measured to be ~320 nm. With this system, subcellular structures of red blood cells and B16 melanoma cells were resolved ex vivo; microvessels, including individual capillaries, in a mouse ear were clearly imaged label-freely in vivo, using the intrinsic optical absorption from hemoglobin. The current study suggests that, the optical-absorption contrast, subwavelength resolution, and reflection-mode ability of the developed photoacoustic microscopy may empower a wide range of biomedical studies for visualizing cellular and/or subcellular structures.
SUBMITTER: Song W
PROVIDER: S-EPMC4285601 | biostudies-other | 2014 Dec
REPOSITORIES: biostudies-other
ACCESS DATA