Security of quantum digital signatures for classical messages.
Ontology highlight
ABSTRACT: Quantum digital signatures can be used to authenticate classical messages in an information-theoretically secure way. Previously, a novel quantum digital signature for classical messages has been proposed and gave an experimental demonstration of distributing quantum digital signatures from one sender to two receivers. Some improvement versions were subsequently presented, which made it more feasible with present technology. These proposals for quantum digital signatures are basic building blocks which only deal with the problem of sending single bit messages while no-forging and non-repudiation are guaranteed. For a multi-bit message, it is only mentioned that the basic building blocks must be iterated, but the iteration of the basic building block still does not suffice to define the entire protocol. In this paper, we show that it is necessary to define the entire protocol because some attacks will arise if these building blocks are used in a naive way of iteration. Therefore, we give a way of defining an entire protocol to deal with the problem of sending multi-bit messages based on the basic building blocks and analyse its security.
Project description:The development of quantum networks will be paramount towards practical and secure telecommunications. These networks will need to sign and distribute information between many parties with information-theoretic security, requiring both quantum digital signatures (QDS) and quantum key distribution (QKD). Here, we introduce and experimentally realise a quantum network architecture, where the nodes are fully connected using a minimum amount of physical links. The central node of the network can act either as a totally untrusted relay, connecting the end users via the recently introduced measurement-device-independent (MDI)-QKD, or as a trusted recipient directly communicating with the end users via QKD. Using this network, we perform a proof-of-principle demonstration of QDS mediated by MDI-QKD. For that, we devised an efficient protocol to distil multiple signatures from the same block of data, thus reducing the statistical fluctuations in the sample and greatly enhancing the final QDS rate in the finite-size scenario.
Project description:In comparison to conventional discrete-variable (DV) quantum key distribution (QKD), continuous-variable (CV) QKD with homodyne/heterodyne measurements has distinct advantages of lower-cost implementation and affinity to wavelength division multiplexing. On the other hand, its continuous nature makes it harder to accommodate to practical signal processing, which is always discretized, leading to lack of complete security proofs so far. Here we propose a tight and robust method of estimating fidelity of an optical pulse to a coherent state via heterodyne measurements. We then construct a binary phase modulated CV-QKD protocol and prove its security in the finite-key-size regime against general coherent attacks, based on proof techniques of DV QKD. Such a complete security proof is indispensable for exploiting the benefits of CV QKD.
Project description:Digital signatures are frequently used in data transfer to prevent impersonation, repudiation and message tampering. Currently used classical digital signature schemes rely on public key encryption techniques, where the complexity of so-called 'one-way' mathematical functions is used to provide security over sufficiently long timescales. No mathematical proofs are known for the long-term security of such techniques. Quantum digital signatures offer a means of sending a message, which cannot be forged or repudiated, with security verified by information-theoretical limits and quantum mechanics. Here we demonstrate an experimental system, which distributes quantum signatures from one sender to two receivers and enables message sending ensured against forging and repudiation. Additionally, we analyse the security of the system in some typical scenarios. Our system is based on the interference of phase-encoded coherent states of light and our implementation utilizes polarization-maintaining optical fibre and photons with a wavelength of 850 nm.
Project description:A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transition from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d?+?z?(T), where z is the dynamical exponent, and temperature-depending parameter ?(T)???[0, 1] decreases with the temperature such that ?(T?=?0)?=?1 and ?(T????)?=?0. Our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.
Project description:At the intersection of quantum theory and relativity lies the possibility of a clock experiencing a superposition of proper times. We consider quantum clocks constructed from the internal degrees of relativistic particles that move through curved spacetime. The probability that one clock reads a given proper time conditioned on another clock reading a different proper time is derived. From this conditional probability distribution, it is shown that when the center-of-mass of these clocks move in localized momentum wave packets they observe classical time dilation. We then illustrate a quantum correction to the time dilation observed by a clock moving in a superposition of localized momentum wave packets that has the potential to be observed in experiment. The Helstrom-Holevo lower bound is used to derive a proper time-energy/mass uncertainty relation.
Project description:So far, unconditional security in key distribution processes has been confined to quantum key distribution (QKD) protocols based on the no-cloning theorem of nonorthogonal bases. Recently, a completely different approach, the unconditionally secured classical key distribution (USCKD), has been proposed for unconditional security in the purely classical regime. Unlike QKD, both classical channels and orthogonal bases are key ingredients in USCKD, where unconditional security is provided by deterministic randomness via path superposition-based reversible unitary transformations in a coupled Mach-Zehnder interferometer. Here, the first experimental demonstration of the USCKD protocol is presented.
Project description:Mappings of classical computation onto statistical mechanics models have led to remarkable successes in addressing some complex computational problems. However, such mappings display thermodynamic phase transitions that may prevent reaching solution even for easy problems known to be solvable in polynomial time. Here we map universal reversible classical computations onto a planar vertex model that exhibits no bulk classical thermodynamic phase transition, independent of the computational circuit. Within our approach the solution of the computation is encoded in the ground state of the vertex model and its complexity is reflected in the dynamics of the relaxation of the system to its ground state. We use thermal annealing with and without 'learning' to explore typical computational problems. We also construct a mapping of the vertex model into the Chimera architecture of the D-Wave machine, initiating an approach to reversible classical computation based on state-of-the-art implementations of quantum annealing.
Project description:The presence of higher-index saddles on a multidimensional potential energy surface is usually assumed to be of little significance in chemical reaction dynamics. Such a viewpoint requires careful reconsideration, thanks to elegant experiments and novel theoretical approaches that have come about in recent years. In this work, we perform a detailed classical and quantum dynamical study of a model two-degree-of-freedom Hamiltonian, which captures the essence of the debate regarding the dominance of a concerted or a stepwise reaction mechanism. We show that the ultrafast shift of the mechanism from a concerted to a stepwise one is essentially a classical dynamical effect. In addition, due to the classical phase space being a mixture of regular and chaotic dynamics, it is possible to have a rich variety of dynamical behavior, including a Murrell – Laidler type mechanism, even at energies sufficiently above that of the index- Supplementary Information The online version contains supplementary material with details on computation of the invariant
Project description:Friction at water-carbon interfaces remains a major puzzle with theories and simulations unable to explain experimental trends in nanoscale waterflow. A recent theoretical framework─quantum friction (QF)─proposes to resolve these experimental observations by considering nonadiabatic coupling between dielectric fluctuations in water and graphitic surfaces. Here, using a classical model that enables fine-tuning of the solid's dielectric spectrum, we provide evidence from simulations in general support of QF. In particular, as features in the solid's dielectric spectrum begin to overlap with water's librational and Debye modes, we find an increase in friction in line with that proposed by QF. At the microscopic level, we find that this contribution to friction manifests more distinctly in the dynamics of the solid's charge density than that of water. Our findings suggest that experimental signatures of QF may be more pronounced in the solid's response rather than liquid water's.
Project description:Optimal wavelength assignment in dense-wavelength-division-multiplexing (DWDM) systems that integrate both quantum and classical channels is studied. In such systems, weak quantum key distribution (QKD) signals travel alongside intense classical signals on the same fiber, where the former can be masked by the background noise induced by the latter. Here, we investigate how optimal wavelength assignment can mitigate this problem. We consider different DWDM structures and various sources of crosstalk and propose several near-optimal wavelength assignment methods that maximize the total secret key rate of the QKD channels. Our numerical results show that the optimum wavelength assignment pattern is commonly consisted of several interspersed quantum and classical bands. Using our proposed techniques, the total secret key rate of quantum channels can substantially be improved, as compared to conventional assignment methods, in the noise dominated regimes. Alternatively, we can maximize the number of QKD users supported under certain key rate constraints.