Structural differences in epiphyseal and physeal hypertrophic chondrocytes.
Ontology highlight
ABSTRACT: We have observed that epiphyseal and physeal hypertrophic chondrocytes in BALB/c mice show considerable differences of light microscopic and ultrastructural appearance, even when the cells are at the same stage of differentiation. In addition, cell structure maintenance improved with tissue preparation controlled for osmolarity and for membrane stabilization using 0.5% ruthenium hexammine trichloride (RHT) for both light microscopy (LM) and electron microscopy (EM) or 0.5% lanthanum nitrate for LM. Physeal hypertrophic chondrocytes showed a gradual increase in size closer to the metaphysis and a change in shape as cells elongated along the long axis. The nucleus remained central, with uniformly dispersed chromatin, and the rough endoplasmic reticulum (RER) was randomly dispersed throughout cytoplasm with little to no presence against the cell membrane. Even the lowermost cells showed thin elongated or dilated cisternae of RER and intact cell membranes. Epiphyseal chondrocytes remained circular to oval with no elongation. Nucleus and RER were positioned as a complete transcellular central nucleocytoplasmic column or as an incomplete bud with RER of the column/bud always continuous with RER peripherally against the intact cell membrane. RER was densely packed with parallel cisternae with adjacent cytoplasm empty of organelles but often filled with circular deposits of moderately electron-dense material consistent with fat. Optimal technique for LM involved fixation using glutaraldehyde (GA) 1.3%, paraformaldehyde (PFA) 1% and RHT 0.5% (mOsm 606) embedded in JB-4 plastic and stained with 0.5% toluidine blue. Optimal technique for EM used fixation with GA 1.3%, PFA 1%, RHT 0.5% and cacodylate buffer 0.03 M (mOsm 511) and post-fixation including 1% osmium tetroxide. These observations lead to the possibility that the same basic cell, the hypertrophic chondrocyte, has differing functional mechanisms at different regions of the developing bone.
SUBMITTER: Shapiro F
PROVIDER: S-EPMC4422087 | biostudies-other | 2015
REPOSITORIES: biostudies-other
ACCESS DATA