Unknown

Dataset Information

0

Two highly homologous members of the ClC chloride channel family in both rat and human kidney.


ABSTRACT: We have cloned two closely related putative Cl- channels from both rat kidney (designated rClC-K1 and rClC-K2) and human kidney (hClC-Ka and hClC-Kb) by sequence homology to the ClC family of voltage-gated Cl- channels. While rClC-K1 is nearly identical to ClC-K1, a channel recently isolated by a similar strategy, rClC-K2 is 80% identical to rClC-K1 and is encoded by a different gene. hClC-Ka and hClC-Kb show approximately 90% identity, while being approximately 80% identical to the rat proteins. All ClC-K gene products are expressed predominantly in the kidney. While rClC-K1 is expressed strongly in the cortical thick ascending limb and the distal convoluted tubule, with minor expression in the S3 segment of the proximal tubule and the cortical collecting tubule, rClC-K2 is expressed in all segments of the nephron examined, including the glomerulus. Since they are related more closely to each other than to the rat proteins, hClC-Ka and hClC-Kb cannot be regarded as strict homologs of rClC-K1 or rClC-K2. After injection of ClC-K cRNAs into oocytes, corresponding proteins were made and glycosylated, though no additional Cl- currents were detectable. Glycosylation occurs between domains D8 and D9, leading to a revision of the transmembrane topology model for ClC channels.

SUBMITTER: Kieferle S 

PROVIDER: S-EPMC44314 | biostudies-other | 1994 Jul

REPOSITORIES: biostudies-other

altmetric image

Publications

Two highly homologous members of the ClC chloride channel family in both rat and human kidney.

Kieferle S S   Fong P P   Bens M M   Vandewalle A A   Jentsch T J TJ  

Proceedings of the National Academy of Sciences of the United States of America 19940701 15


We have cloned two closely related putative Cl- channels from both rat kidney (designated rClC-K1 and rClC-K2) and human kidney (hClC-Ka and hClC-Kb) by sequence homology to the ClC family of voltage-gated Cl- channels. While rClC-K1 is nearly identical to ClC-K1, a channel recently isolated by a similar strategy, rClC-K2 is 80% identical to rClC-K1 and is encoded by a different gene. hClC-Ka and hClC-Kb show approximately 90% identity, while being approximately 80% identical to the rat proteins  ...[more]

Similar Datasets

| S-EPMC6362620 | biostudies-literature
| S-EPMC23874 | biostudies-literature
| S-EPMC2556891 | biostudies-literature
| S-EPMC7314819 | biostudies-literature
| S-EPMC6483157 | biostudies-literature
| S-EPMC1383427 | biostudies-literature
| S-EPMC1218554 | biostudies-other
| S-EPMC6672451 | biostudies-literature
| S-EPMC4156679 | biostudies-literature
| S-EPMC8222222 | biostudies-literature