Unknown

Dataset Information

0

Ultra-large alignments using phylogeny-aware profiles.


ABSTRACT: Many biological questions, including the estimation of deep evolutionary histories and the detection of remote homology between protein sequences, rely upon multiple sequence alignments and phylogenetic trees of large datasets. However, accurate large-scale multiple sequence alignment is very difficult, especially when the dataset contains fragmentary sequences. We present UPP, a multiple sequence alignment method that uses a new machine learning technique, the ensemble of hidden Markov models, which we propose here. UPP produces highly accurate alignments for both nucleotide and amino acid sequences, even on ultra-large datasets or datasets containing fragmentary sequences. UPP is available at https://github.com/smirarab/sepp .

SUBMITTER: Nguyen NP 

PROVIDER: S-EPMC4492008 | biostudies-other | 2015 Jun

REPOSITORIES: biostudies-other

altmetric image

Publications

Ultra-large alignments using phylogeny-aware profiles.

Nguyen Nam-Phuong D NP   Mirarab Siavash S   Kumar Keerthana K   Warnow Tandy T  

Genome biology 20150616


Many biological questions, including the estimation of deep evolutionary histories and the detection of remote homology between protein sequences, rely upon multiple sequence alignments and phylogenetic trees of large datasets. However, accurate large-scale multiple sequence alignment is very difficult, especially when the dataset contains fragmentary sequences. We present UPP, a multiple sequence alignment method that uses a new machine learning technique, the ensemble of hidden Markov models,  ...[more]

Similar Datasets

| S-EPMC8317108 | biostudies-literature
| S-EPMC7671320 | biostudies-literature
| S-EPMC3568017 | biostudies-literature
| S-EPMC6950343 | biostudies-literature
| S-EPMC4914121 | biostudies-literature
| S-EPMC4914097 | biostudies-literature
| S-EPMC7297217 | biostudies-literature
| S-EPMC9169257 | biostudies-literature
| S-EPMC3009689 | biostudies-literature
| S-EPMC11251492 | biostudies-literature