Resolving Anomalies in Predicting Electrokinetic Energy Conversion Efficiencies of Nanofluidic Devices.
Ontology highlight
ABSTRACT: We devise a new approach for capturing complex interfacial interactions over reduced length scales, towards predicting electrokinetic energy conversion efficiencies of nanofluidic devices. By embedding several aspects of intermolecular interactions in continuum based formalism, we show that our simple theory becomes capable of representing complex interconnections between electro-mechanics and hydrodynamics over reduced length scales. The predictions from our model are supported by reported experimental data, and are in excellent quantitative agreement with molecular dynamics simulations. The present model, thus, may be employed to rationalize the discrepancies between low energy conversion efficiencies of nanofluidic channels that have been realized from experiments, and the impractically high energy conversion efficiencies that have been routinely predicted by the existing theories.
SUBMITTER: Majumder S
PROVIDER: S-EPMC4593964 | biostudies-other | 2015
REPOSITORIES: biostudies-other
ACCESS DATA