Sub-phonon-period compression of electron pulses for atomic diffraction.
Ontology highlight
ABSTRACT: Visualizing the rearrangement of atoms in a wide range of molecular and condensed-matter systems requires resolving picometre displacements on a 10-fs timescale, which is achievable using pump-probe diffraction, given short enough pulses. Here we demonstrate the compression of single-electron pulses with a de Broglie wavelength of 0.08 ångström to a full-width at half-maximum duration of 28 fs or equivalently 12-fs root-mean square, substantially shorter than most phonon periods and molecular normal modes. Atomic resolution diffraction from a complex organic molecule is obtained with good signal-to-noise ratio within a data acquisition period of minutes. The electron-laser timing is found to be stable within 5 fs (s.d.) over several hours, allowing pump-probe diffraction at repetitive excitation. These measurements show the feasibility of laser-pump/electron-probe scans that can resolve the fastest atomic motions relevant in reversible condensed-matter transformations and organic chemistry.
SUBMITTER: Gliserin A
PROVIDER: S-EPMC4640064 | biostudies-other | 2015
REPOSITORIES: biostudies-other
ACCESS DATA