Unknown

Dataset Information

0

Knockout of Drosophila RNase ZL impairs mitochondrial transcript processing, respiration and cell cycle progression.


ABSTRACT: RNase Z(L) is a highly conserved tRNA 3'-end processing endoribonuclease. Similar to its mammalian counterpart, Drosophila RNase Z(L) (dRNaseZ) has a mitochondria targeting signal (MTS) flanked by two methionines at the N-terminus. Alternative translation initiation yields two protein forms: the long one is mitochondrial, and the short one may localize in the nucleus or cytosol. Here, we have generated a mitochondria specific knockout of the dRNaseZ gene. In this in vivo model, cells deprived of dRNaseZ activity display impaired mitochondrial polycistronic transcript processing, increased reactive oxygen species (ROS) and a switch to aerobic glycolysis compensating for cellular ATP. Damaged mitochondria impose a cell cycle delay at the G2 phase disrupting cell proliferation without affecting cell viability. Antioxidants attenuate genotoxic stress and rescue cell proliferation, implying a critical role for ROS. We suggest that under a low-stress condition, ROS activate tumor suppressor p53, which modulates cell cycle progression and promotes cell survival. Transcriptional profiling of p53 targets confirms upregulation of antioxidant and cycB-Cdk1 inhibitor genes without induction of apoptotic genes. This study implicates Drosophila RNase Z(L) in a novel retrograde signaling pathway initiated by the damage in mitochondria and manifested in a cell cycle delay before the mitotic entry.

SUBMITTER: Xie X 

PROVIDER: S-EPMC4666369 | biostudies-other | 2015 Dec

REPOSITORIES: biostudies-other

altmetric image

Publications

Knockout of Drosophila RNase ZL impairs mitochondrial transcript processing, respiration and cell cycle progression.

Xie Xie X   Dubrovsky Edward B EB  

Nucleic acids research 20151108 21


RNase Z(L) is a highly conserved tRNA 3'-end processing endoribonuclease. Similar to its mammalian counterpart, Drosophila RNase Z(L) (dRNaseZ) has a mitochondria targeting signal (MTS) flanked by two methionines at the N-terminus. Alternative translation initiation yields two protein forms: the long one is mitochondrial, and the short one may localize in the nucleus or cytosol. Here, we have generated a mitochondria specific knockout of the dRNaseZ gene. In this in vivo model, cells deprived of  ...[more]