Unknown

Dataset Information

0

Engineering interface-type resistive switching in BiFeO3 thin film switches by Ti implantation of bottom electrodes.


ABSTRACT: BiFeO3 based MIM structures with Ti-implanted Pt bottom electrodes and Au top electrodes have been fabricated on Sapphire substrates. The resulting metal-insulator-metal (MIM) structures show bipolar resistive switching without an electroforming process. It is evidenced that during the BiFeO3 thin film growth Ti diffuses into the BiFeO3 layer. The diffused Ti effectively traps and releases oxygen vacancies and consequently stabilizes the resistive switching in BiFeO3 MIM structures. Therefore, using Ti implantation of the bottom electrode, the retention performance can be greatly improved with increasing Ti fluence. For the used raster-scanned Ti implantation the lateral Ti distribution is not homogeneous enough and endurance slightly degrades with Ti fluence. The local resistive switching investigated by current sensing atomic force microscopy suggests the capability of down-scaling the resistive switching cell to one BiFeO3 grain size by local Ti implantation of the bottom electrode.

SUBMITTER: You T 

PROVIDER: S-EPMC4686890 | biostudies-other | 2015

REPOSITORIES: biostudies-other

altmetric image

Publications

Engineering interface-type resistive switching in BiFeO3 thin film switches by Ti implantation of bottom electrodes.

You Tiangui T   Ou Xin X   Niu Gang G   Bärwolf Florian F   Li Guodong G   Du Nan N   Bürger Danilo D   Skorupa Ilona I   Jia Qi Q   Yu Wenjie W   Wang Xi X   Schmidt Oliver G OG   Schmidt Heidemarie H  

Scientific reports 20151222


BiFeO3 based MIM structures with Ti-implanted Pt bottom electrodes and Au top electrodes have been fabricated on Sapphire substrates. The resulting metal-insulator-metal (MIM) structures show bipolar resistive switching without an electroforming process. It is evidenced that during the BiFeO3 thin film growth Ti diffuses into the BiFeO3 layer. The diffused Ti effectively traps and releases oxygen vacancies and consequently stabilizes the resistive switching in BiFeO3 MIM structures. Therefore, u  ...[more]

Similar Datasets

| S-EPMC10103050 | biostudies-literature
| S-EPMC4704057 | biostudies-literature
| S-EPMC4802337 | biostudies-literature
| S-EPMC3623890 | biostudies-other
| S-EPMC4389717 | biostudies-other
| S-EPMC5429844 | biostudies-literature
| S-EPMC4860564 | biostudies-literature
| S-EPMC5069483 | biostudies-literature
| S-EPMC4935939 | biostudies-literature
| S-EPMC4707501 | biostudies-other