Unknown

Dataset Information

0

Kv3.1 uses a timely resurgent K(+) current to secure action potential repolarization.


ABSTRACT: High-frequency action potential (AP) transmission is essential for rapid information processing in the central nervous system. Voltage-dependent Kv3 channels play an important role in this process thanks to their high activation threshold and fast closure kinetics, which reduce the neuron's refractory period. However, premature Kv3 channel closure leads to incomplete membrane repolarization, preventing sustainable AP propagation. Here, we demonstrate that Kv3.1b channels solve this problem by producing resurgent K(+) currents during repolarization, thus ensuring enough repolarizing power to terminate each AP. Unlike previously described resurgent Na(+) and K(+) currents, Kv3.1b's resurgent current does not originate from recovery of channel block or inactivation but results from a unique combination of steep voltage-dependent gating kinetics and ultra-fast voltage-sensor relaxation. These distinct properties are readily transferrable onto an orthologue Kv channel by transplanting the voltage-sensor's S3-S4 loop, providing molecular insights into the mechanism by which Kv3 channels contribute to high-frequency AP transmission.

SUBMITTER: Labro AJ 

PROVIDER: S-EPMC4703866 | biostudies-other | 2015 Dec

REPOSITORIES: biostudies-other

altmetric image

Publications

Kv3.1 uses a timely resurgent K(+) current to secure action potential repolarization.

Labro Alain J AJ   Priest Michael F MF   Lacroix Jérôme J JJ   Snyders Dirk J DJ   Bezanilla Francisco F  

Nature communications 20151217


High-frequency action potential (AP) transmission is essential for rapid information processing in the central nervous system. Voltage-dependent Kv3 channels play an important role in this process thanks to their high activation threshold and fast closure kinetics, which reduce the neuron's refractory period. However, premature Kv3 channel closure leads to incomplete membrane repolarization, preventing sustainable AP propagation. Here, we demonstrate that Kv3.1b channels solve this problem by pr  ...[more]

Similar Datasets

| S-EPMC4468020 | biostudies-literature
| S-EPMC4802457 | biostudies-literature
| S-EPMC3771516 | biostudies-literature
| S-EPMC2907679 | biostudies-other
| S-EPMC6609543 | biostudies-literature
| S-EPMC4665041 | biostudies-literature
| S-EPMC3683072 | biostudies-literature
| S-EPMC5935632 | biostudies-literature
| S-EPMC5935650 | biostudies-literature
| S-EPMC4656054 | biostudies-literature