Insight into the mechanical, thermodynamics and superconductor properties of NbRuB via first-principles calculation.
Ontology highlight
ABSTRACT: Using the first-principles calculations, the electronic structure, chemical bonding, mechanical, thermodynamics and superconductor properties of NbRuB are investigated. The optimized lattice parameters were in good agreement with the experimental data. The analysis of the density of states and chemical bonding implies that the metallic behavior of NbRuB originates from the Ru and Nb, and the bonding behaviors are a mixture of covalent-ionic bonds. The bulk modulus, shear modulus, Young's modulus, Poisson's ratio and hardness of NbRuB were calculated. The results reveal that the NbRuB is ductility and the Vickers hardness is 15.06 GPa. Moreover, the 3D dependences of reciprocals of Young's modulus is also calculated and discussed, showing strong anisotropic character for NbRuB. Finally, the Debye temperature and superconducting transition temperature are obtained.
SUBMITTER: Tian W
PROVIDER: S-EPMC4709565 | biostudies-other | 2016
REPOSITORIES: biostudies-other
ACCESS DATA