Unknown

Dataset Information

0

Direct flow cytometry measurements reveal a fine-tuning of symbiotic cell dynamics according to the host developmental needs in aphid symbiosis.


ABSTRACT: Endosymbiotic associations constitute a driving force in the ecological and evolutionary diversification of metazoan organisms. Little is known about whether and how symbiotic cells are coordinated according to host physiology. Here, we use the nutritional symbiosis between the insect pest, Acyrthosiphon pisum, and its obligate symbiont, Buchnera aphidicola, as a model system. We have developed a novel approach for unculturable bacteria, based on flow cytometry, and used this method to estimate the absolute numbers of symbionts at key stages of aphid life. The endosymbiont population increases exponentially throughout nymphal development, showing a growing rate which has never been characterized by indirect molecular techniques. Using histology and imaging techniques, we have shown that the endosymbiont-bearing cells (bacteriocytes) increase significantly in number and size during the nymphal development, and clustering in the insect abdomen. Once adulthood is reached and the laying period has begun, the dynamics of symbiont and host cells is reversed: the number of endosymbionts decreases progressively and the bacteriocyte structure degenerates during insect aging. In summary, these results show a coordination of the cellular dynamics between bacteriocytes and primary symbionts and reveal a fine-tuning of aphid symbiotic cells to the nutritional demand imposed by the host physiology throughout development.

SUBMITTER: Simonet P 

PROVIDER: S-EPMC4731799 | biostudies-other | 2016 Jan

REPOSITORIES: biostudies-other

altmetric image

Publications

Direct flow cytometry measurements reveal a fine-tuning of symbiotic cell dynamics according to the host developmental needs in aphid symbiosis.

Simonet Pierre P   Duport Gabrielle G   Gaget Karen K   Weiss-Gayet Michèle M   Colella Stefano S   Febvay Gérard G   Charles Hubert H   Viñuelas José J   Heddi Abdelaziz A   Calevro Federica F  

Scientific reports 20160129


Endosymbiotic associations constitute a driving force in the ecological and evolutionary diversification of metazoan organisms. Little is known about whether and how symbiotic cells are coordinated according to host physiology. Here, we use the nutritional symbiosis between the insect pest, Acyrthosiphon pisum, and its obligate symbiont, Buchnera aphidicola, as a model system. We have developed a novel approach for unculturable bacteria, based on flow cytometry, and used this method to estimate  ...[more]

Similar Datasets

| S-EPMC3246468 | biostudies-literature
| S-EPMC1183350 | biostudies-literature
| S-EPMC6276011 | biostudies-literature
| S-EPMC5828623 | biostudies-literature
2024-02-05 | MSV000094014 | MassIVE
| S-EPMC8448758 | biostudies-literature
| S-EPMC6690024 | biostudies-literature
| S-EPMC7470447 | biostudies-literature
| S-EPMC5357801 | biostudies-literature
| S-EPMC4094467 | biostudies-literature