Unknown

Dataset Information

0

Silver Nanoclusters with Specific Ion Recognition Modulated by Ligand Passivation toward Fluorimetric and Colorimetric Copper Analysis and Biological Imaging.


ABSTRACT: Silver nanoclusters were synthesized and passivated by glutathione (GSH) ligand, with high aqueous stability and powerful red fluorescence and UV-vis yellow colour. Importantly, the specific recognition of the AgNCs was modulated from Hg(2+) ions to Cu(2+) ions upon the GSH passivation, of which the unique GSH-Cu(2+) chelating reaction could conduct the fluorescence quenching of AgNCs. Strong UV-vis absorbance of GSH-passivated AgNCs could also be realized depending on the Cu(2+) levels. Moreover, the Cu(2+)-induced loss of fluorescence and UV-vis absorbance of GSH-passivated AgNCs could be well restored by using stronger Cu(2+) chelating agent. A simultaneous and reversible fluorimetric and colorimetric sensing method was thereby developed for probing Cu(2+) ions in blood with high sensitivity and selectivity. Subsequently, the fluorescence-trackable imaging for live tissues and cells was demonstrated towards the analysis Cu(2+) ions using GSH-passivated AgNCs as the fluorescent probes. This study indicates that the use of functional ligands like GSH could not only modulate the specific ion recognition of AgNCs, but also endow them the high aqueous stability and powerful red fluorescence towards the wide applications for ion sensing and biological imaging in the complicated media like blood.

SUBMITTER: Sun Z 

PROVIDER: S-EPMC4742814 | biostudies-other | 2016 Feb

REPOSITORIES: biostudies-other

altmetric image

Publications

Silver Nanoclusters with Specific Ion Recognition Modulated by Ligand Passivation toward Fluorimetric and Colorimetric Copper Analysis and Biological Imaging.

Sun Zongzhao Z   Li Shuying S   Jiang Yao Y   Qiao Yuchun Y   Zhang Liyan L   Xu Lulu L   Liu Jinghui J   Qi Wei W   Wang Hua H  

Scientific reports 20160205


Silver nanoclusters were synthesized and passivated by glutathione (GSH) ligand, with high aqueous stability and powerful red fluorescence and UV-vis yellow colour. Importantly, the specific recognition of the AgNCs was modulated from Hg(2+) ions to Cu(2+) ions upon the GSH passivation, of which the unique GSH-Cu(2+) chelating reaction could conduct the fluorescence quenching of AgNCs. Strong UV-vis absorbance of GSH-passivated AgNCs could also be realized depending on the Cu(2+) levels. Moreove  ...[more]

Similar Datasets

| S-EPMC7940276 | biostudies-literature
| S-EPMC8400922 | biostudies-literature
| S-EPMC9419071 | biostudies-literature
| S-EPMC3439878 | biostudies-other
| S-EPMC6648241 | biostudies-literature
| S-EPMC9290904 | biostudies-literature
| S-EPMC6631436 | biostudies-literature
| S-EPMC6693819 | biostudies-literature
| S-EPMC6328285 | biostudies-literature
| S-EPMC10197127 | biostudies-literature