Unknown

Dataset Information

0

Exercise training and α1-adrenoreceptor-mediated sympathetic vasoconstriction in resting and contracting skeletal muscle.


ABSTRACT: Exercise training (ET) increases sympathetic vasoconstrictor responsiveness and enhances contraction-mediated inhibition of sympathetic vasoconstriction (i.e., sympatholysis) through a nitric oxide (NO)-dependent mechanism. Changes in α2-adrenoreceptor vasoconstriction mediate a portion of these training adaptations, however the contribution of other postsynaptic receptors remains to be determined. Therefore, the purpose of this study was to investigate the effect of ET on α1-adrenoreceptor-mediated vasoconstriction in resting and contracting muscle. It was hypothesized that α1-adrenoreceptor-mediated sympatholysis would be enhanced following ET. Male Sprague Dawley rats were randomized to sedentary (S; n = 12) or heavy-intensity treadmill ET (n = 11) groups. Subsequently, rats were anesthetized and instrumented for lumbar sympathetic chain stimulation and measurement of femoral vascular conductance (FVC) at rest and during muscle contraction. The percentage change in FVC in response to sympathetic stimulation was measured in control, α1-adrenoreceptor blockade (Prazosin; 20 μg, IV), and combined α1 and NO synthase (NOS) blockade (l-NAME; 5 mg·kg(-1) IV) conditions. Sympathetic vasoconstrictor responsiveness was increased (P < 0.05) in ET compared to S rats at low, but not high (P > 0.05) stimulation frequencies at rest (S: 2 Hz: -25 ± 4%; 5 Hz: -45 ± 5 %; ET: 2 Hz: -35 ± 7%, 5 Hz: -52 ± 7%), whereas sympathetic vasoconstrictor responsiveness was not different (P > 0.05) between groups during contraction (S: 2 Hz: -11 ± 8%; 5 Hz: -26 ± 11%; ET: 2 Hz: -10 ± 7%, 5 Hz: -27 ± 12%). Prazosin blunted (P < 0.05) vasoconstrictor responsiveness in S and ET rats at rest and during contraction, and abolished group differences in vasoconstrictor responsiveness. Subsequent NOS blockade increased vasoconstrictor responses (P < 0.05) in S at rest and during contraction, whereas in ET vasoconstriction was increased (P < 0.05) in response to sympathetic stimulation at 2 Hz at rest and unchanged (P > 0.05) during contraction. ET enhanced (P < 0.05) sympatholysis, however the training-mediated improvements in sympatholysis were abolished by α1-adrenoreceptor blockade. Subsequent NOS inhibition did not alter (P > 0.05) sympatholysis in S or ET rats. In conclusion, ET augmented α1-adrenoreceptor-mediated vasoconstriction in resting skeletal muscle and enhanced α1-adrenoreceptor-mediated sympatholysis. Furthermore, these data suggest that NO is not required to inhibit α2-adrenoreceptor- and nonadrenoreceptor-mediated vasoconstriction during exercise.

SUBMITTER: Just TP 

PROVIDER: S-EPMC4758927 | biostudies-other | 2016 Feb

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC6165214 | biostudies-literature
2012-02-10 | GSE35659 | GEO
2012-02-10 | E-GEOD-35659 | biostudies-arrayexpress
2024-07-02 | GSE240653 | GEO
| S-EPMC8953782 | biostudies-literature
| S-EPMC9854705 | biostudies-literature
| PRJNA1004572 | ENA
2023-04-01 | GSE137832 | GEO
2022-03-01 | E-MTAB-11282 | biostudies-arrayexpress
2020-05-01 | GSE139258 | GEO