Unknown

Dataset Information

0

Ultrasound triggered image-guided drug delivery to inhibit vascular reconstruction via paclitaxel-loaded microbubbles.


ABSTRACT: Paclitaxel (PTX) has been recognized as a promising drug for intervention of vascular reconstructions. However, it is still difficult to achieve local drug delivery in a spatio-temporally controllable manner under real-time image guidance. Here, we introduce an ultrasound (US) triggered image-guided drug delivery approach to inhibit vascular reconstruction via paclitaxel (PTX)-loaded microbubbles (PLM) in a rabbit iliac balloon injury model. PLM was prepared through encapsulating PTX in the shell of lipid microbubbles via film hydration and mechanical vibration technique. Our results showed PLM could effectively deliver PTX when exposed to US irradiation and result in significantly lower viability of vascular smooth muscle cells. Ultrasonographic examinations revealed the US signals from PLM in the iliac artery were greatly increased after intravenous administration of PLM, making it possible to identify the restenosis regions of iliac artery. The in vivo anti-restenosis experiments with PLM and US greatly inhibited neointimal hyperplasia at the injured site, showing an increased lumen area and reduced the ratio of intima area and the media area (I/M ratio). No obvious functional damages to liver and kidney were observed for those animals. Our study provided a promising approach to realize US triggered image-guided PTX delivery for therapeutic applications against iliac restenosis.

SUBMITTER: Zhu X 

PROVIDER: S-EPMC4761943 | biostudies-other | 2016 Feb

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC7457952 | biostudies-literature
| S-EPMC5593770 | biostudies-literature
| S-EPMC5805674 | biostudies-literature
| S-EPMC4373966 | biostudies-literature
| S-EPMC9378430 | biostudies-literature
| S-EPMC7308341 | biostudies-literature
| S-EPMC5743552 | biostudies-literature
| S-EPMC9927880 | biostudies-literature
| S-EPMC7025580 | biostudies-literature
| S-EPMC4966949 | biostudies-literature