A novel pathway to detect and cope with exogenous dsDNA.
Ontology highlight
ABSTRACT: How a living cell responds to exogenous materials is one of the fundamental questions in the life sciences. In particular, understanding the mechanisms by which a cell recognizes exogenous double-stranded DNA (dsDNA) is important for immunology research because it will facilitate the control of pathogen infections that entail the presence of exogenous dsDNA in the cytoplasm of host cells. Several cytosolic dsDNA sensor proteins that trigger innate immune responses have been identified and the downstream signaling pathways have been investigated. However, the events that occur at the site of exogenous dsDNA when it is exposed to the cytosol of the host cell remain unknown. Using dsDNA-coated polystyrene beads incorporated into living cells, we recently found that barrier-to-autointegration factor (BAF) binds to the exogenous dsDNA immediately after its appearance in the cytosol and plays a role in DNA avoidance of autophagy. Our findings reveal a novel pathway in which BAF plays a key role in the detection of and response to exogenous dsDNA.
SUBMITTER: Kobayashi S
PROVIDER: S-EPMC4802740 | biostudies-other | 2015 Sep-Oct
REPOSITORIES: biostudies-other
ACCESS DATA