Unknown

Dataset Information

0

Single crystalline cylindrical nanowires - toward dense 3D arrays of magnetic vortices.


ABSTRACT: Magnetic vortex-based media have recently been proposed for several applications of nanotechnology; however, because lithography is typically used for their preparation, their low-cost, large-scale fabrication is a challenge. One solution may be to use arrays of densely packed cobalt nanowires that have been efficiently fabricated by electrodeposition. In this work, we present this type of nanoscale magnetic structures that can hold multiple stable magnetic vortex domains at remanence with different chiralities. The stable vortex state is observed in arrays of monocrystalline cobalt nanowires with diameters as small as 45?nm and lengths longer than 200?nm with vanishing magnetic cross talk between closely packed neighboring wires in the array. Lorentz microscopy, electron holography and magnetic force microscopy, supported by micromagnetic simulations, show that the structure of the vortex state can be adjusted by varying the aspect ratio of the nanowires. The data we present here introduce a route toward the concept of 3-dimensional vortex-based magnetic memories.

SUBMITTER: Ivanov YP 

PROVIDER: S-EPMC4814901 | biostudies-other | 2016 Mar

REPOSITORIES: biostudies-other

altmetric image

Publications

Single crystalline cylindrical nanowires - toward dense 3D arrays of magnetic vortices.

Ivanov Yurii P YP   Chuvilin Andrey A   Vivas Laura G LG   Kosel Jurgen J   Chubykalo-Fesenko Oksana O   Vázquez Manuel M  

Scientific reports 20160331


Magnetic vortex-based media have recently been proposed for several applications of nanotechnology; however, because lithography is typically used for their preparation, their low-cost, large-scale fabrication is a challenge. One solution may be to use arrays of densely packed cobalt nanowires that have been efficiently fabricated by electrodeposition. In this work, we present this type of nanoscale magnetic structures that can hold multiple stable magnetic vortex domains at remanence with diffe  ...[more]

Similar Datasets

| S-EPMC3061564 | biostudies-literature
| S-EPMC6648424 | biostudies-literature
| S-EPMC7152837 | biostudies-literature
| S-EPMC6223916 | biostudies-literature
| S-EPMC5011740 | biostudies-literature
| S-EPMC5738410 | biostudies-literature
| S-EPMC6775085 | biostudies-literature
| S-EPMC3918920 | biostudies-literature
| S-EPMC3311142 | biostudies-literature
| S-EPMC8460632 | biostudies-literature