Pressure-induced topological phases of KNa2Bi.
Ontology highlight
ABSTRACT: We report an ab initio study of the effect of hydrostatic pressure and uniaxial strain on electronic properties of KNa2Bi, a cubic bialkali bismuthide. It is found that this zero-gap semimetal with an inverted band structure at the Brillouin zone center can be driven into various topological phases under proper external pressure. We show that upon hydrostatic compression KNa2Bi turns into a trivial semiconductor with a conical Dirac-type dispersion of electronic bands at the point of the topological transition while the breaking of cubic symmetry by applying a uniaxial strain converts the compound into a topological insulator or into a three-dimensional Dirac semimetal with nontrivial surface Fermi arcs depending on the sign of strain. The calculated phonon dispersions show that KNa2Bi is dynamically stable both in the cubic structure (at any considered pressures) and in the tetragonal phase (under uniaxial strain).
SUBMITTER: Sklyadneva IY
PROVIDER: S-EPMC4827094 | biostudies-other | 2016 Apr
REPOSITORIES: biostudies-other
ACCESS DATA