ABSTRACT: Lycoris aurea (L' Hér.) Herb, a perennial grass species, produces a unique variety of pharmacologically active Amaryllidaceae alkaloids. However, the key enzymes and their expression pattern involved in the biosynthesis of Amaryllidaceae alkaloids (especially for galanthamine) are far from being fully understood. Quantitative real-time polymerase chain reaction (qRT-PCR), a commonly used method for quantifying gene expression, requires stable reference genes to normalize its data. In this study, to choose the appropriate reference genes under different experimental conditions, 14 genes including YLS8 (mitosis protein YLS8), CYP2 (Cyclophilin 2), CYP 1 (Cyclophilin 1), TIP41 (TIP41-like protein), EXP2 (Expressed protein 2), PTBP1 (Polypyrimidine tract-binding protein 1), EXP1 (Expressed protein 1), PP2A (Serine/threonine-protein phosphatase 2A), ?-TUB (?-tubulin), ?-TUB (?-tubulin), EF1-? (Elongation factor 1-?), UBC (Ubiquitin-conjugating enzyme), ACT (Actin) and GAPDH (Glyceraldehyde 3-phosphate dehydrogenase) were selected from the transcriptome datasets of L. aurea. And then, expressions of these genes were assessed by qRT-PCR in various tissues and the roots under different treatments. The expression stability of the 14 candidates was analyzed by three commonly used software programs (geNorm, NormFinder, and BestKeeper), and their results were further integrated into a comprehensive ranking based on the geometric mean. The results show the relatively stable genes for each subset as follows: (1) EXP1 and TIP41 for all samples; (2) UBC and EXP1 for NaCl stress; (3) PTBP1 and EXP1 for heat stress, polyethylene glycol (PEG) stress and ABA treatment; (4) UBC and CYP2 for cold stress; (5) PTBP1 and PP2A for sodium nitroprusside (SNP) treatment; (6) CYP1 and TIP41 for methyl jasmonate (MeJA) treatment; and (7) EXP1 and TIP41 for various tissues. The reliability of these results was further enhanced through comparison between part qRT-PCR result and RNA sequencing (RNA-seq) data. In summary, our results identified appropriate reference genes for qRT-PCR in L. aurea, and will facilitate gene expression studies under these conditions.