Unknown

Dataset Information

0

Coaxial Dual-wavelength Interferometric Method for a Thermal Infrared Focal-plane-array with Integrated Gratings.


ABSTRACT: Uncooled infrared (IR) focal-plane-array (FPA) with both large sensing range and high sensitivity is a great challenge due to the limited dynamic range of the detected signals. A coaxial dual-wavelength interferometric system was proposed here to detect thermal-induced displacements of an ultrasensitive FPA based on polyvinyl-chloride(PVC)/gold bimorph cantilevers and carbon nanotube (CNT)-based IR absorbing films. By alternately selecting the two displacement measurements performed by λ1 (=640 nm) and λ2 (=660 nm), the temperature measuring range with greater than 50% maximum sensitivity can be extended by eight-fold in comparison with the traditional single-wavelength mode. Meanwhile, the relative measurement error over the full measuring range is below 0.4%. In addition, it offers a feasible approach for on-line and on-wafer FPA characterization with great convenience and high efficiency.

SUBMITTER: Shang Y 

PROVIDER: S-EPMC4872167 | biostudies-other | 2016

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC5134549 | biostudies-literature
| S-EPMC5857408 | biostudies-literature
| S-EPMC3715895 | biostudies-other
| S-EPMC9281567 | biostudies-literature
| S-EPMC4921826 | biostudies-other
| S-EPMC6021468 | biostudies-literature
| S-EPMC5856514 | biostudies-literature
| S-EPMC6872790 | biostudies-literature
| S-EPMC4217487 | biostudies-literature
| S-EPMC5772444 | biostudies-literature