Ultrasound characterization of the mastoid for detecting middle ear effusion: A preliminary clinical validation.
Ontology highlight
ABSTRACT: Ultrasound detection of middle ear effusion (MEE) is an emerging technique in otolaryngology. This study proposed using ultrasound characterization of the mastoid to noninvasively measure MEE-induced mastoid effusion (ME) as a new strategy for determining the presence of MEE. In total, 53 patients were enrolled (Group I: normal, n = 20; Group II: proven MEE through both otoscopy and tympanometry, n = 15; Group III: patients with MEE having effusions observed during grommet surgery, n = 18). A 2.25-MHz delay-line transducer was used to measure backscattered signals from the mastoid. The Nakagami parameter was estimated using the acquired signals to model the echo amplitude distribution for quantifying changes in the acoustic structures of mastoid air cells. The median Nakagami parameter and interquartile range were 0.35 (0.34-0.37) for Group I, 0.39 (0.37-0.41) for Group II, and 0.43 (0.39-0.51) for Group III. The echo amplitude distribution observed for patients with MEE was closer to Rayleigh distribution than that without MEE. Receiver operating characteristic (ROC) curve analysis further revealed that the area under the ROC was 0.88, sensitivity was 72.73%, specificity was 95%, and accuracy was 81.13%. The proposed method has considerable potential for noninvasive and comfortable evaluation of MEE.
SUBMITTER: Chen CK
PROVIDER: S-EPMC4899789 | biostudies-other | 2016
REPOSITORIES: biostudies-other
ACCESS DATA