Unknown

Dataset Information

0

Emergence of new red-shifted carbon nanotube photoluminescence based on proximal doped-site design.


ABSTRACT: Single-walled carbon nanotubes (SWNTs) show unique photoluminescence (PL) in the near-infrared (NIR) region. Here we propose a concept based on the proximal modification in local covalent functionalization of SWNTs. Quantum mechanical simulations reveal that the SWNT band gap changes specifically based on the proximal doped-site design. Thus, we synthesize newly-designed bisdiazonium molecules and conduct local fucntionalisation of SWNTs. Consequently, new red-shifted PL (E11(2*)) from the bisdiazonium-modified SWNTs with (6, 5) chirality is recognized around 1250?nm with over ~270?nm Stokes shift from the PL of the pristine SWNTs and the PL wavelengths are shifted depending on the methylene spacer lengths of the modifiers. The present study revealed that SWNT PL modulation is enable by close-proximity-local covalent modification, which is highly important for fundamental understanding of intrinsic SWNT PL properties as well as exciton engineering-based applications including photonic devices and (bio)imaging/sensing.

SUBMITTER: Shiraki T 

PROVIDER: S-EPMC4921849 | biostudies-other | 2016

REPOSITORIES: biostudies-other

altmetric image

Publications

Emergence of new red-shifted carbon nanotube photoluminescence based on proximal doped-site design.

Shiraki Tomohiro T   Shiraishi Tomonari T   Juhász Gergely G   Nakashima Naotoshi N  

Scientific reports 20160627


Single-walled carbon nanotubes (SWNTs) show unique photoluminescence (PL) in the near-infrared (NIR) region. Here we propose a concept based on the proximal modification in local covalent functionalization of SWNTs. Quantum mechanical simulations reveal that the SWNT band gap changes specifically based on the proximal doped-site design. Thus, we synthesize newly-designed bisdiazonium molecules and conduct local fucntionalisation of SWNTs. Consequently, new red-shifted PL (E11(2*)) from the bisdi  ...[more]

Similar Datasets

| S-EPMC5568031 | biostudies-literature
| S-EPMC5644376 | biostudies-literature
| S-EPMC5839148 | biostudies-literature
| S-EPMC6563925 | biostudies-literature
| S-EPMC3216570 | biostudies-literature
| S-EPMC6086608 | biostudies-literature
| S-EPMC6534678 | biostudies-literature
| S-EPMC7573975 | biostudies-literature
| S-EPMC7307923 | biostudies-literature
| S-EPMC6906313 | biostudies-literature