Unknown

Dataset Information

0

Novel synthesis of holey reduced graphene oxide (HRGO) by microwave irradiation method for anode in lithium-ion batteries.


ABSTRACT: In this work, holey reduced graphene oxide (HRGO) was synthesized by the deposition of silver (Ag) nanoparticles onto the reduced graphene oxide (RGO) sheets followed by nitric acid treatment to remove Ag nanoparticles by microwave irradiation to form a porous structure. The HRGO were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), ultra violet-visible spectroscopy (UV-Vis), thermogravimetric analysis (TGA), and Raman spectroscopy. These novel HRGO exhibited high rate capability with excellent cycling stability as an anode material for lithium-ion batteries. The results have shown an excellent electrochemical response in terms of charge/discharge capacity (423?mAh/g at 100?mA/g). The cyclic performance was also exceptional as a high reversible capacity (400?mAh/g at 100?mA/g) was retained for 100 charge/discharge cycles. This fascinating electrochemical performance can be ascribed to their specific porous structure (2-5?nm pores) and high surface area (457?m(2)/g), providing numerous active sites for Li(+) insertion, high electrical conductivity, low charge-transfer resistance across the electrolyte-electrode interface, and improved structural stability against the local volume change during Li(+) insertion-extraction. Such electrodes are envisioned to be mass scalable with relatively simple and low-cost fabrication procedures, thereby providing a clear pathway toward commercialization.

SUBMITTER: Alsharaeh E 

PROVIDER: S-EPMC4960613 | biostudies-other | 2016

REPOSITORIES: biostudies-other

altmetric image

Publications

Novel synthesis of holey reduced graphene oxide (HRGO) by microwave irradiation method for anode in lithium-ion batteries.

Alsharaeh Edreese E   Ahmed Faheem F   Aldawsari Yazeed Y   Khasawneh Majdi M   Abuhimd Hatem H   Alshahrani Mohammad M  

Scientific reports 20160726


In this work, holey reduced graphene oxide (HRGO) was synthesized by the deposition of silver (Ag) nanoparticles onto the reduced graphene oxide (RGO) sheets followed by nitric acid treatment to remove Ag nanoparticles by microwave irradiation to form a porous structure. The HRGO were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), ultra violet-visible spectroscopy (UV-Vis), thermogravimetric analysis (TGA), a  ...[more]

Similar Datasets

| S-EPMC6678407 | biostudies-literature
| S-EPMC5093559 | biostudies-literature
| S-EPMC7857345 | biostudies-literature
| S-EPMC7911565 | biostudies-literature
| S-EPMC3730167 | biostudies-literature
| S-EPMC4148662 | biostudies-literature
| S-EPMC8495711 | biostudies-literature
| S-EPMC8398711 | biostudies-literature
| S-EPMC5344618 | biostudies-literature
| S-EPMC5566221 | biostudies-literature