H3PAgI: generation by laser-ablation and characterization by rotational spectroscopy and ab initio calculations.
Ontology highlight
ABSTRACT: The new compound H3PAgI has been synthesized in the gas phase by means of the reaction of laser-ablated silver metal with a pulse of gas consisting of a dilute mixture of ICF3 and PH3 in argon. Ground-state rotational spectra were detected and assigned for the two isotopologues H3P(107)AgI and H3P(109)AgI in their natural abundance by means of a chirped-pulse, Fourier-transform, microwave spectrometer. Both isotopologues exhibit rotational spectra of the symmetric-top type, analysis of which led to accurate values of the rotational constant B0, the quartic centrifugal distortion constants DJ and DJK, and the iodine nuclear quadrupole coupling constant ?aa(I) = eQqaa. Ab initio calculations at the explicitly-correlated level of theory CCSD(T)(F12*)/aug-cc-pVDZ confirmed that the atoms PAg-I lie on the C3 axis in that order. The experimental rotational constants were interpreted to give the bond lengths r0(PAg) = 2.3488(20) Å and r0(Ag-I) = 2.5483(1) Å, in good agreement with the equilibrium lengths of 2.3387 Å and 2.5537 Å, respectively, obtained in the ab initio calculations. Measures of the strength of the interaction of PH3 and AgI (the dissociation energy De for the process H3PAgI = H3P + AgI and the intermolecular stretching force constant FPAg) are presented and are interpreted to show that the order of binding strength is H3PHI < H3PICl < H3PAgI for these metal-bonded molecules and their halogen-bonded and hydrogen-bonded analogues.
SUBMITTER: Stephens SL
PROVIDER: S-EPMC5044702 | biostudies-other | 2016 Jul
REPOSITORIES: biostudies-other
ACCESS DATA