Sensitive detection of copper ions via ion-responsive fluorescence quenching of engineered porous silicon nanoparticles.
Ontology highlight
ABSTRACT: Heavy metal pollution has been a problem since the advent of modern transportation, which despite efforts to curb emissions, continues to play a critical role in environmental pollution. Copper ions (Cu(2+)), in particular, are one of the more prevalent metals that have widespread detrimental ramifications. From this perspective, a simple and inexpensive method of detecting Cu(2+) at the micromolar level would be highly desirable. In this study, we use porous silicon nanoparticles (NPs), obtained via anodic etching of Si wafers, as a basis for undecylenic acid (UDA)- or acrylic acid (AA)-mediated hydrosilylation. The resulting alkyl-terminated porous silicon nanoparticles (APS NPs) have enhanced fluorescence stability and intensity, and importantly, exhibit [Cu(2+)]-dependent quenching of fluorescence. After determining various aqueous sensing conditions for Cu(2+), we demonstrate the use of APS NPs in two separate applications - a standard well-based paper kit and a portable layer-by-layer stick kit. Collectively, we demonstrate the potential of APS NPs in sensors for the effective detection of Cu(2+).
SUBMITTER: Hwang J
PROVIDER: S-EPMC5067703 | biostudies-other | 2016 Oct
REPOSITORIES: biostudies-other
ACCESS DATA