Nutrient stoichiometry in winter wheat: Element concentration pattern reflects developmental stage and weather.
Ontology highlight
ABSTRACT: At least 16 nutrient elements are required by plants for growth and survival, but the factors affecting element concentration and their temporal evolution are poorly understood. The objective was to investigate i) element concentration pattern in winter wheat as affected by crop developmental stage and weather, and ii) whether, in the short term, element stoichiometry reflects the type of preceding crop. We assessed the temporal trajectories of element concentration pattern (N, P, K, Ca, Mg, S, Mn, Fe, Cu, Na, Zn) across the life cycle (from seed to seed) of winter wheat field-grown in cool-temperate Sweden during two years with contrasting weather and when cultivated in monoculture or after different non-wheat preceding crops. We found strong influence of developmental stage on concentration pattern, with the greatest deviation from grain concentrations found in plants at the start of stem elongation in spring. Inter-annual differences in weather affected stoichiometry, but no evidence was found for a short-term preceding-crop effect on element stoichiometry. Winter wheat element stoichiometry is similar in actively growing plant tissues and seeds. Nitrogen exerts a strong influence on the concentration pattern for all elements. Three groups of elements with concentrations changing in concert were identified.
SUBMITTER: Weih M
PROVIDER: S-EPMC5075900 | biostudies-other | 2016 Oct
REPOSITORIES: biostudies-other
ACCESS DATA