Src Kinases Regulate Glutamatergic Input to Hypothalamic Presympathetic Neurons and Sympathetic Outflow in Hypertension.
Ontology highlight
ABSTRACT: The elevated sympathetic outflow associated with hypertension is maintained by increased N-methyl-d-aspartate receptor (NMDAR) activity in the paraventricular nucleus (PVN) of the hypothalamus. Synaptic NMDAR activity is tightly regulated by protein kinases, including the Src family of tyrosine kinases. We determined whether Src kinases play a role in increased NMDAR activity of PVN neurons projecting to the rostral ventrolateral medulla and in elevated sympathetic vasomotor tone in spontaneously hypertensive rats (SHRs). The Src protein level in the PVN was significantly greater in SHRs than in normotensive Wistar-Kyoto (WKY) rats and was not significantly altered by lowering blood pressure with celiac ganglionectomy in SHRs. Inhibition of Src kinase activity with 4-amino-5-(4-chlorophenyl)-7-(dimethylethyl)pyrazolo[3,4-d]pyrimidine (PP2) completely normalized the higher amplitudes of evoked NMDAR-mediated excitatory postsynaptic currents and puff NMDA-elicited currents of rostral ventrolateral medulla-projecting PVN neurons in SHRs. PP2 treatment also attenuated the higher frequency of NMDAR-mediated miniature excitatory postsynaptic currents of these neurons in SHRs. However, PP2 had no effect on NMDAR-excitatory postsynaptic currents or miniature excitatory postsynaptic currents of rostral ventrolateral medulla-projecting PVN neurons in WKY rats. NMDAR activity increased by an Src-activating peptide was blocked by PP2 but not by inhibition of casein kinase 2. In addition, microinjection of PP2 into the PVN not only decreased lumbar sympathetic nerve discharges and blood pressure but also eliminated the inhibitory effect of the NMDAR antagonist on sympathetic nerve activity and blood pressure in SHRs. Collectively, our findings suggest that increased Src kinase activity potentiates presynaptic and postsynaptic NMDAR activity in the PVN and sympathetic vasomotor tone in hypertension.
SUBMITTER: Qiao X
PROVIDER: S-EPMC5145744 | biostudies-other | 2017 Jan
REPOSITORIES: biostudies-other
ACCESS DATA