Unknown

Dataset Information

0

Using Sub-Network Combinations to Scale Up an Enumeration Method for Determining the Network Structures of Biological Functions.


ABSTRACT: Deduction of biological regulatory networks from their functions is one of the focus areas of systems biology. Among the different techniques used in this reverse-engineering task, one powerful method is to enumerate all candidate network structures to find suitable ones. However, this method is severely limited by calculation capability: due to the brute-force approach, it is infeasible for networks with large number of nodes to be studied using traditional enumeration method because of the combinatorial explosion. In this study, we propose a new reverse-engineering technique based on the enumerating method: sub-network combinations. First, a complex biological function is divided into several sub-functions. Next, the three-node-network enumerating method is applied to search for sub-networks that are able to realize each of the sub-functions. Finally, complex whole networks are constructed by enumerating all possible combinations of sub-networks. The optimal ones are selected and analyzed. To demonstrate the effectiveness of this new method, we used it to deduct the network structures of a Pavlovian-like function. The whole Pavlovian-like network was successfully constructed by combining robust sub-networks, and the results were analyzed. With sub-network combination, the complexity has been largely reduced. Our method also provides a functional modular view of biological systems.

SUBMITTER: Xi JY 

PROVIDER: S-EPMC5161363 | biostudies-other | 2016

REPOSITORIES: biostudies-other

altmetric image

Publications

Using Sub-Network Combinations to Scale Up an Enumeration Method for Determining the Network Structures of Biological Functions.

Xi J Y JY   Ouyang Q Q  

PloS one 20161216 12


Deduction of biological regulatory networks from their functions is one of the focus areas of systems biology. Among the different techniques used in this reverse-engineering task, one powerful method is to enumerate all candidate network structures to find suitable ones. However, this method is severely limited by calculation capability: due to the brute-force approach, it is infeasible for networks with large number of nodes to be studied using traditional enumeration method because of the com  ...[more]

Similar Datasets

| S-EPMC10790985 | biostudies-literature
2020-11-27 | GSE132309 | GEO
| S-EPMC8585012 | biostudies-literature
| S-EPMC10665021 | biostudies-literature
| S-EPMC2659402 | biostudies-literature
| S-EPMC11236158 | biostudies-literature
| S-EPMC8809615 | biostudies-literature
| S-EPMC5384192 | biostudies-literature
| S-EPMC9364965 | biostudies-literature
| S-EPMC7229196 | biostudies-literature