Unknown

Dataset Information

0

The polycystins are modulated by cellular oxygen-sensing pathways and regulate mitochondrial function.


ABSTRACT: Autosomal dominant polycystic kidney disease is caused by mutations in the genes encoding polycystin-1 (PC1) and polycystin-2 (PC2), which form an ion channel complex that may mediate ciliary sensory processes and regulate endoplasmic reticulum (ER) Ca2+ release. Loss of PC1 expression profoundly alters cellular energy metabolism. The mechanisms that control the trafficking of PC1 and PC2, as well as their broader physiological roles, are poorly understood. We found that O2 levels regulate the subcellular localization and channel activity of the polycystin complex through its interaction with the O2-sensing prolyl hydroxylase domain containing protein EGLN3 (or PHD3), which hydroxylates PC1. Moreover, cells lacking PC1 expression use less O2 and show less mitochondrial Ca2+ uptake in response to bradykinin-induced ER Ca2+ release, indicating that PC1 can modulate mitochondrial function. These data suggest a novel role for the polycystins in sensing and responding to cellular O2 levels.

SUBMITTER: Padovano V 

PROVIDER: S-EPMC5231895 | biostudies-other | 2017 Jan

REPOSITORIES: biostudies-other

altmetric image

Publications

The polycystins are modulated by cellular oxygen-sensing pathways and regulate mitochondrial function.

Padovano Valeria V   Kuo Ivana Y IY   Stavola Lindsey K LK   Aerni Hans R HR   Flaherty Benjamin J BJ   Chapin Hannah C HC   Ma Ming M   Somlo Stefan S   Boletta Alessandra A   Ehrlich Barbara E BE   Rinehart Jesse J   Caplan Michael J MJ  

Molecular biology of the cell 20161123 2


Autosomal dominant polycystic kidney disease is caused by mutations in the genes encoding polycystin-1 (PC1) and polycystin-2 (PC2), which form an ion channel complex that may mediate ciliary sensory processes and regulate endoplasmic reticulum (ER) Ca<sup>2+</sup> release. Loss of PC1 expression profoundly alters cellular energy metabolism. The mechanisms that control the trafficking of PC1 and PC2, as well as their broader physiological roles, are poorly understood. We found that O<sub>2</sub>  ...[more]

Similar Datasets

| S-EPMC2914843 | biostudies-literature
| S-EPMC8075724 | biostudies-literature
| S-EPMC3843001 | biostudies-literature
| S-EPMC6286375 | biostudies-literature
| S-EPMC4403258 | biostudies-literature
| S-EPMC6046248 | biostudies-other
| S-EPMC6074833 | biostudies-literature