Unknown

Dataset Information

0

Ubiquitination mediates Kv1.3 endocytosis as a mechanism for protein kinase C-dependent modulation.


ABSTRACT: The voltage-dependent potassium channel Kv1.3 plays essential physiological functions in the immune system. Kv1.3, regulating the membrane potential, facilitates downstream Ca2+ -dependent pathways and becomes concentrated in specific membrane microdomains that serve as signaling platforms. Increased and/or delocalized expression of the channel is observed at the onset of several autoimmune diseases. In this work, we show that adenosine (ADO), which is a potent endogenous modulator, stimulates PKC, thereby causing immunosuppression. PKC activation triggers down-regulation of Kv1.3 by inducing a clathrin-mediated endocytic event that targets the channel to lysosomal-degradative compartments. Therefore, the abundance of Kv1.3 at the cell surface decreases, which is clearly compatible with an effective anti-inflammatory response. This mechanism requires ubiquitination of Kv1.3, catalyzed by the E3 ubiquitin-ligase Nedd4-2. Postsynaptic density protein 95 (PSD-95), a member of the MAGUK family, recruits Kv1.3 into lipid-raft microdomains and protects the channel against ubiquitination and endocytosis. Therefore, the Kv1.3/PSD-95 association fine-tunes the anti-inflammatory response in leukocytes. Because Kv1.3 is a promising multi-therapeutic target against human pathologies, our results have physiological relevance. In addition, this work elucidates the ADO-dependent PKC-mediated molecular mechanism that triggers immunomodulation by targeting Kv1.3 in leukocytes.

SUBMITTER: Martinez-Marmol R 

PROVIDER: S-EPMC5301257 | biostudies-other | 2017 Feb

REPOSITORIES: biostudies-other

altmetric image

Publications

Ubiquitination mediates Kv1.3 endocytosis as a mechanism for protein kinase C-dependent modulation.

Martínez-Mármol Ramón R   Styrczewska Katarzyna K   Pérez-Verdaguer Mireia M   Vallejo-Gracia Albert A   Comes Núria N   Sorkin Alexander A   Felipe Antonio A  

Scientific reports 20170210


The voltage-dependent potassium channel Kv1.3 plays essential physiological functions in the immune system. Kv1.3, regulating the membrane potential, facilitates downstream Ca<sup>2+</sup> -dependent pathways and becomes concentrated in specific membrane microdomains that serve as signaling platforms. Increased and/or delocalized expression of the channel is observed at the onset of several autoimmune diseases. In this work, we show that adenosine (ADO), which is a potent endogenous modulator, s  ...[more]

Similar Datasets

| S-EPMC3048751 | biostudies-literature
| S-EPMC3079366 | biostudies-literature
| S-EPMC10435667 | biostudies-literature
| S-EPMC3365950 | biostudies-literature
| S-EPMC6435726 | biostudies-literature
| S-EPMC3372862 | biostudies-literature
| S-EPMC1838753 | biostudies-literature
| S-EPMC4836834 | biostudies-literature
| S-EPMC2685661 | biostudies-literature
| S-EPMC6621050 | biostudies-literature