Carbon Derived from Jatropha Seed Hull as a Potential Green Adsorbent for Cadmium (II) Removal from Wastewater.
Ontology highlight
ABSTRACT: Carbon from jatropha seed hull (JC) was prepared to study the adsorption of cadmium ions (Cd2+) from aqueous solutions under various experimental conditions. Batch equilibrium methods have been used to study the influences of the initial metal ion concentration (0.5-50 ppm), dosage (0.2-1 g), contact time (0-300 min), pH (2-7), and temperature (26-60 °C) on adsorption behavior. It has been found that the amount of cadmium adsorbed increases with the initial metal ion concentration, temperature, pH, contact time, and amount of adsorbent. A kinetic study proved that the mechanism of Cd2+ adsorption on JC followed a three steps process, confirmed by an intraparticle diffusion model: rapid adsorption of metal ions, a transition phase, and nearly flat plateau section. The experimental results also showed that the Cd2+ adsorption process followed pseudo-second-order kinetics. The Langmuir and Freundlich adsorption isotherm models were used to describe the experimental data, with the former exhibiting a better correlation coefficient than the latter (R² = 0.999). The monolayer adsorption capacity of JC has been compared with the capacities of the other reported agriculturally-based adsorbents. It has been clearly demonstrated that this agricultural waste generated by the biofuel industry can be considered a potential low-cost adsorbent for the removal of Cd2+ from industrial effluents.
SUBMITTER: Mohammad M
PROVIDER: S-EPMC5452857 | biostudies-other | 2013 Oct
REPOSITORIES: biostudies-other
ACCESS DATA