Synthesis and Characterization of New Chlorhexidine-Containing Nanoparticles for Root Canal Disinfection.
Ontology highlight
ABSTRACT: Root canal system disinfection is limited due to anatomical complexities. Better delivery systems of antimicrobial agents are needed to ensure efficient bacteria eradication. The purpose of this study was to design chlorhexidine-containing nanoparticles that could steadily release the drug. The drug chlorhexidine was encapsulated in poly(ethylene glycol)-block-poly(l-lactide) (PEG-b-PLA) to synthesize bilayer nanoparticles. The encapsulation efficiency was determined through thermogravimetric analysis (TGA), and particle characterization was performed through microscopy studies of particle morphology and size. Their antimicrobial effect was assessed over the endodontic pathogen Enterococcus faecalis. The nanoparticles ranged in size from 300-500 nm, which is considered small enough for penetration inside small dentin tubules. The nanoparticles were dispersed in a hydrogel matrix carrier system composed of 1% hydroxyethyl cellulose, and this hydrogel system was observed to have enhanced bacterial inhibition over longer periods of time. Chlorhexidine-containing nanoparticles demonstrate potential as a drug carrier for root canal procedures. Their size and rate of release may allow for sustained inhibition of bacteria in the root canal system.
SUBMITTER: Haseeb R
PROVIDER: S-EPMC5456790 | biostudies-other | 2016 Jun
REPOSITORIES: biostudies-other
ACCESS DATA