Description of an establishment event by the invasive Asian longhorned beetle (Anoplophora glabripennis) in a suburban landscape in the northeastern United States.
Ontology highlight
ABSTRACT: The establishment of non-native species is commonly described as occurring in three phases: arrival, establishment, and dispersal. Both arrival and dispersal by the Asian longhorned beetle (Anoplophora glabripennis Motschulsky), a xylophagous Cerambycid native to China and the Korean peninsula, has been documented for multiple locations in both North America and Europe, however the transitional phase, establishment, is not well understood for this species due to the need to rapidly remove populations to prevent dispersal and assist eradication, and the evident variation in the behavior of populations. Here we describe the dynamics of an establishment event for the Asian longhorned beetle in a small, isolated population within the regulated quarantine zone near Worcester, Massachusetts, USA. These data were collected during an opportunity afforded by logistical limits on the Cooperative Asian Longhorned Beetle Eradication Program administered by state, federal, and local government partners. Seventy-one infested red maple (Acer rubrum) trees and 456 interspersed un-infested trees were surveyed in an isolated, recently established population within a ~0.29 ha stand in a suburban wetland conservation area in which nearly 90% of the trees were host species, and nearly 80% were Acer rubrum. Tree-ring analyses show that within this establishing population, Asian longhorned beetles initially infested one or two A. rubrum, before moving through the stand to infest additional A. rubrum based not on distance or direction, but on tree size, with infestation biased towards trees with larger trunk diameters. Survey data from the larger landscape suggest this population may have generated long-distance dispersers (~1400 m), and that these dispersal events occurred before the originally infested host trees were fully exploited by the beetle. The distribution and intensity of damage documented in this population suggest dispersal here may have been spatially more rapid and diffuse than in other documented infestations. Dispersal at these larger spatial scales also implies that when beetles move beyond the closed canopy of the stand, the direction of dispersal may be linked to prevailing winds.
SUBMITTER: Hull-Sanders H
PROVIDER: S-EPMC5519225 | biostudies-other | 2017
REPOSITORIES: biostudies-other
ACCESS DATA