Minimally inconsistent reasoning in Semantic Web.
Ontology highlight
ABSTRACT: Reasoning with inconsistencies is an important issue for Semantic Web as imperfect information is unavoidable in real applications. For this, different paraconsistent approaches, due to their capacity to draw as nontrivial conclusions by tolerating inconsistencies, have been proposed to reason with inconsistent description logic knowledge bases. However, existing paraconsistent approaches are often criticized for being too skeptical. To this end, this paper presents a non-monotonic paraconsistent version of description logic reasoning, called minimally inconsistent reasoning, where inconsistencies tolerated in the reasoning are minimized so that more reasonable conclusions can be inferred. Some desirable properties are studied, which shows that the new semantics inherits advantages of both non-monotonic reasoning and paraconsistent reasoning. A complete and sound tableau-based algorithm, called multi-valued tableaux, is developed to capture the minimally inconsistent reasoning. In fact, the tableaux algorithm is designed, as a framework for multi-valued DL, to allow for different underlying paraconsistent semantics, with the mere difference in the clash conditions. Finally, the complexity of minimally inconsistent description logic reasoning is shown on the same level as the (classical) description logic reasoning.
SUBMITTER: Zhang X
PROVIDER: S-EPMC5531629 | biostudies-other | 2017
REPOSITORIES: biostudies-other
ACCESS DATA