Unknown

Dataset Information

0

Block-Diagonal Constrained Low-Rank and Sparse Graph for Discriminant Analysis of Image Data.


ABSTRACT: Recently, low-rank and sparse model-based dimensionality reduction (DR) methods have aroused lots of interest. In this paper, we propose an effective supervised DR technique named block-diagonal constrained low-rank and sparse-based embedding (BLSE). BLSE has two steps, i.e., block-diagonal constrained low-rank and sparse representation (BLSR) and block-diagonal constrained low-rank and sparse graph embedding (BLSGE). Firstly, the BLSR model is developed to reveal the intrinsic intra-class and inter-class adjacent relationships as well as the local neighborhood relations and global structure of data. Particularly, there are mainly three items considered in BLSR. First, a sparse constraint is required to discover the local data structure. Second, a low-rank criterion is incorporated to capture the global structure in data. Third, a block-diagonal regularization is imposed on the representation to promote discrimination between different classes. Based on BLSR, informative and discriminative intra-class and inter-class graphs are constructed. With the graphs, BLSGE seeks a low-dimensional embedding subspace by simultaneously minimizing the intra-class scatter and maximizing the inter-class scatter. Experiments on public benchmark face and object image datasets demonstrate the effectiveness of the proposed approach.

SUBMITTER: Guo T 

PROVIDER: S-EPMC5539604 | biostudies-other | 2017 Jun

REPOSITORIES: biostudies-other

Similar Datasets

| S-EPMC10081874 | biostudies-literature
| S-EPMC3856189 | biostudies-literature
| S-EPMC5929142 | biostudies-literature
| S-EPMC7472490 | biostudies-literature
| S-EPMC4529927 | biostudies-literature
| S-EPMC6364613 | biostudies-literature
| S-EPMC5403160 | biostudies-literature
| S-EPMC2794982 | biostudies-literature
| S-EPMC8906173 | biostudies-literature
| S-EPMC7505231 | biostudies-literature